Mudanças de comportamento: apps destinados ao Android 15 ou mais recente

Assim como nas versões anteriores, o Android 15 inclui mudanças de comportamento que podem afetar seu app. As mudanças de comportamento a seguir se aplicam exclusivamente a apps destinados ao Android 15 ou versões mais recentes. Caso seu app seja direcionado ao Android 15 ou a versões mais recentes, faça modificações para oferecer suporte a esses comportamentos de forma adequada, quando aplicável.

Consulte também a lista de mudanças de comportamento que afetam todos os apps executados no Android 15, independente da targetSdkVersion do seu app.

Principal recurso

O Android 15 modifica ou expande vários recursos principais do sistema Android.

Mudanças nos serviços em primeiro plano

We are making the following changes to foreground services with Android 15.

Data sync foreground service timeout behavior

Android 15 introduces a new timeout behavior to dataSync for apps targeting Android 15 (API level 35) or higher. This behavior also applies to the new mediaProcessing foreground service type.

The system permits an app's dataSync services to run for a total of 6 hours in a 24-hour period, after which the system calls the running service's Service.onTimeout(int, int) method (introduced in Android 15). At this time, the service has a few seconds to call Service.stopSelf(). When Service.onTimeout() is called, the service is no longer considered a foreground service. If the service does not call Service.stopSelf(), the system throws an internal exception. The exception is logged in Logcat with the following message:

Fatal Exception: android.app.RemoteServiceException: "A foreground service of
type dataSync did not stop within its timeout: [component name]"

To avoid problems with this behavior change, you can do one or more of the following:

  1. Have your service implement the new Service.onTimeout(int, int) method. When your app receives the callback, make sure to call stopSelf() within a few seconds. (If you don't stop the app right away, the system generates a failure.)
  2. Make sure your app's dataSync services don't run for more than a total of 6 hours in any 24-hour period (unless the user interacts with the app, resetting the timer).
  3. Only start dataSync foreground services as a result of direct user interaction; since your app is in the foreground when the service starts, your service has the full six hours after the app goes to the background.
  4. Instead of using a dataSync foreground service, use an alternative API.

If your app's dataSync foreground services have run for 6 hours in the last 24, you cannot start another dataSync foreground service unless the user has brought your app to the foreground (which resets the timer). If you try to start another dataSync foreground service, the system throws ForegroundServiceStartNotAllowedException with an error message like "Time limit already exhausted for foreground service type dataSync".

Testing

To test your app's behavior, you can enable data sync timeouts even if your app is not targeting Android 15 (as long as the app is running on an Android 15 device). To enable timeouts, run the following adb command:

adb shell am compat enable FGS_INTRODUCE_TIME_LIMITS your-package-name

You can also adjust the timeout period, to make it easier to test how your app behaves when the limit is reached. To set a new timeout period, run the following adb command:

adb shell device_config put activity_manager data_sync_fgs_timeout_duration duration-in-milliseconds

New media processing foreground service type

Android 15 introduces a new foreground service type, mediaProcessing. This service type is appropriate for operations like transcoding media files. For example, a media app might download an audio file and need to convert it to a different format before playing it. You can use a mediaProcessing foreground service to make sure the conversion continues even while the app is in the background.

The system permits an app's mediaProcessing services to run for a total of 6 hours in a 24-hour period, after which the system calls the running service's Service.onTimeout(int, int) method (introduced in Android 15). At this time, the service has a few seconds to call Service.stopSelf(). If the service does not call Service.stopSelf(), the system throws an internal exception. The exception is logged in Logcat with the following message:

Fatal Exception: android.app.RemoteServiceException: "A foreground service of
type mediaProcessing did not stop within its timeout: [component name]"

To avoid having the exception, you can do one of the following:

  1. Have your service implement the new Service.onTimeout(int, int) method. When your app receives the callback, make sure to call stopSelf() within a few seconds. (If you don't stop the app right away, the system generates a failure.)
  2. Make sure your app's mediaProcessing services don't run for more than a total of 6 hours in any 24-hour period (unless the user interacts with the app, resetting the timer).
  3. Only start mediaProcessing foreground services as a result of direct user interaction; since your app is in the foreground when the service starts, your service has the full six hours after the app goes to the background.
  4. Instead of using a mediaProcessing foreground service, use an alternative API, like WorkManager.

If your app's mediaProcessing foreground services have run for 6 hours in the last 24, you cannot start another mediaProcessing foreground service unless the user has brought your app to the foreground (which resets the timer). If you try to start another mediaProcessing foreground service, the system throws ForegroundServiceStartNotAllowedException with an error message like "Time limit already exhausted for foreground service type mediaProcessing".

For more information about the mediaProcessing service type, see Changes to foreground service types for Android 15: Media processing.

Testing

To test your app's behavior, you can enable media processing timeouts even if your app is not targeting Android 15 (as long as the app is running on an Android 15 device). To enable timeouts, run the following adb command:

adb shell am compat enable FGS_INTRODUCE_TIME_LIMITS your-package-name

You can also adjust the timeout period, to make it easier to test how your app behaves when the limit is reached. To set a new timeout period, run the following adb command:

adb shell device_config put activity_manager media_processing_fgs_timeout_duration duration-in-milliseconds

Restrictions on BOOT_COMPLETED broadcast receivers launching foreground services

There are new restrictions on BOOT_COMPLETED broadcast receivers launching foreground services. BOOT_COMPLETED receivers are not allowed to launch the following types of foreground services:

If a BOOT_COMPLETED receiver tries to launch any of those types of foreground services, the system throws ForegroundServiceStartNotAllowedException.

Testing

To test your app's behavior, you can enable these new restrictions even if your app is not targeting Android 15 (as long as the app is running on an Android 15 device). Run the following adb command:

adb shell am compat enable FGS_BOOT_COMPLETED_RESTRICTIONS your-package-name

To send a BOOT_COMPLETED broadcast without restarting the device, run the following adb command:

adb shell am broadcast -a android.intent.action.BOOT_COMPLETED your-package-name

Restrictions on starting foreground services while an app holds the SYSTEM_ALERT_WINDOW permission

Previously, if an app held the SYSTEM_ALERT_WINDOW permission, it could launch a foreground service even if the app was currently in the background (as discussed in exemptions from background start restrictions).

If an app targets Android 15, this exemption is now narrower. The app now needs to have the SYSTEM_ALERT_WINDOW permission and also have a visible overlay window. That is, the app needs to first launch a TYPE_APPLICATION_OVERLAY window and the window needs to be visible before you start a foreground service.

If your app attempts to start a foreground service from the background without meeting these new requirements (and it does not have some other exemption), the system throws ForegroundServiceStartNotAllowedException.

If your app declares the SYSTEM_ALERT_WINDOW permission and launches foreground services from the background, it may be affected by this change. If your app gets a ForegroundServiceStartNotAllowedException, check your app's order of operations and make sure your app already has an active overlay window before it attempts to start a foreground service from the background. You can check if your overlay window is currently visible by calling View.getWindowVisibility(), or you can override View.onWindowVisibilityChanged() to get notified whenever the visibility changes.

Testing

To test your app's behavior, you can enable these new restrictions even if your app is not targeting Android 15 (as long as the app is running on an Android 15 device). To enable these new restrictions on starting foreground services from the background, run the following adb command:

adb shell am compat enable FGS_SAW_RESTRICTIONS your-package-name

Mudanças em quando os apps podem modificar o estado global do modo Não perturbe

Apps that target Android 15 (API level 35) and higher can no longer change the global state or policy of Do Not Disturb (DND) on a device (either by modifying user settings, or turning off DND mode). Instead, apps must contribute an AutomaticZenRule, which the system combines into a global policy with the existing most-restrictive-policy-wins scheme. Calls to existing APIs that previously affected global state (setInterruptionFilter, setNotificationPolicy) result in the creation or update of an implicit AutomaticZenRule, which is toggled on and off depending on the call-cycle of those API calls.

Note that this change only affects observable behavior if the app is calling setInterruptionFilter(INTERRUPTION_FILTER_ALL) and expects that call to deactivate an AutomaticZenRule that was previously activated by their owners.

Mudanças na API OpenJDK

Android 15 continues the work of refreshing Android's core libraries to align with the features in the latest OpenJDK LTS releases.

Some of these changes can affect app compatibility for apps targeting Android 15 (API level 35):

  • Changes to string formatting APIs: Validation of argument index, flags, width, and precision are now more strict when using the following String.format() and Formatter.format() APIs:

    For example, the following exception is thrown when an argument index of 0 is used (%0 in the format string):

    IllegalFormatArgumentIndexException: Illegal format argument index = 0
    

    In this case, the issue can be fixed by using an argument index of 1 (%1 in the format string).

  • Changes to component type of Arrays.asList(...).toArray(): When using Arrays.asList(...).toArray(), the component type of the resulting array is now an Object—not the type of the underlying array's elements. So the following code throws a ClassCastException:

    String[] elements = (String[]) Arrays.asList("one", "two").toArray();
    

    For this case, to preserve String as the component type in the resulting array, you could use Collection.toArray(Object[]) instead:

    String[] elements = Arrays.asList("two", "one").toArray(new String[0]);
    
  • Changes to language code handling: When using the Locale API, language codes for Hebrew, Yiddish, and Indonesian are no longer converted to their obsolete forms (Hebrew: iw, Yiddish: ji, and Indonesian: in). When specifying the language code for one of these locales, use the codes from ISO 639-1 instead (Hebrew: he, Yiddish: yi, and Indonesian: id).

  • Changes to random int sequences: Following the changes made in https://bugs.openjdk.org/browse/JDK-8301574, the following Random.ints() methods now return a different sequence of numbers than the Random.nextInt() methods do:

    Generally, this change shouldn't result in app-breaking behavior, but your code shouldn't expect the sequence generated from Random.ints() methods to match Random.nextInt().

The new SequencedCollection API can affect your app's compatibility after you update compileSdk in your app's build configuration to use Android 15 (API level 35):

  • Collision with MutableList.removeFirst() and MutableList.removeLast() extension functions in kotlin-stdlib

    The List type in Java is mapped to the MutableList type in Kotlin. Because the List.removeFirst() and List.removeLast() APIs have been introduced in Android 15 (API level 35), the Kotlin compiler resolves function calls, for example list.removeFirst(), statically to the new List APIs instead of to the extension functions in kotlin-stdlib.

    If an app is re-compiled with compileSdk set to 35 and minSdk set to 34 or lower, and then the app is run on Android 14 and lower, a runtime error is thrown:

    java.lang.NoSuchMethodError: No virtual method
    removeFirst()Ljava/lang/Object; in class Ljava/util/ArrayList;
    

    The existing NewApi lint option in Android Gradle Plugin can catch these new API usages.

    ./gradlew lint
    
    MainActivity.kt:41: Error: Call requires API level 35 (current min is 34): java.util.List#removeFirst [NewApi]
          list.removeFirst()
    

    To fix the runtime exception and lint errors, the removeFirst() and removeLast() function calls can be replaced with removeAt(0) and removeAt(list.lastIndex) respectively in Kotlin. If you're using Android Studio Ladybug | 2024.1.3 or higher, it also provides a quick fix option for these errors.

    Consider removing @SuppressLint("NewApi") and lintOptions { disable 'NewApi' } if the lint option has been disabled.

  • Collision with other methods in Java

    New methods have been added into the existing types, for example, List and Deque. These new methods might not be compatible with the methods with the same name and argument types in other interfaces and classes. In the case of a method signature collision with incompatibility, the javac compiler outputs a build-time error. For example:

    Example error 1:

    javac MyList.java
    
    MyList.java:135: error: removeLast() in MyList cannot implement removeLast() in List
      public void removeLast() {
                  ^
      return type void is not compatible with Object
      where E is a type-variable:
        E extends Object declared in interface List
    

    Example error 2:

    javac MyList.java
    
    MyList.java:7: error: types Deque<Object> and List<Object> are incompatible;
    public class MyList implements  List<Object>, Deque<Object> {
      both define reversed(), but with unrelated return types
    1 error
    

    Example error 3:

    javac MyList.java
    
    MyList.java:43: error: types List<E#1> and MyInterface<E#2> are incompatible;
    public static class MyList implements List<Object>, MyInterface<Object> {
      class MyList inherits unrelated defaults for getFirst() from types List and MyInterface
      where E#1,E#2 are type-variables:
        E#1 extends Object declared in interface List
        E#2 extends Object declared in interface MyInterface
    1 error
    

    To fix these build errors, the class implementing these interfaces should override the method with a compatible return type. For example:

    @Override
    public Object getFirst() {
        return List.super.getFirst();
    }
    

Segurança

O Android 15 inclui mudanças que promovem a segurança do sistema para ajudar a proteger apps e usuários contra apps maliciosos.

Versões TLS restritas

Android 15 限制了对 TLS 版本 1.0 和 1.1 的使用。这些版本之前已在 Android 中被弃用,但现在不允许面向 Android 15 的应用使用。

Início de atividades em segundo plano seguras

Android 15 做出了一些变更,可防止恶意后台应用将其他应用置于前台、提升自身权限并滥用用户互动,从而保护用户免受恶意应用的侵害,并让用户更好地控制自己的设备。自 Android 10(API 级别 29)起,后台 activity 启动受到限制。

其他更改

  • PendingIntent 创建者更改为默认阻止后台活动启动。这有助于防止应用意外创建可能被恶意行为者滥用的 PendingIntent
  • 除非 PendingIntent 发送方允许,否则请勿将应用转至前台。此变更旨在防止恶意应用滥用在后台启动 activity 的功能。默认情况下,除非创建者允许后台 activity 启动权限或发送者具有后台 activity 启动权限,否则不允许应用将任务堆栈带到前台。
  • 控制任务堆栈的顶层 activity 如何完成其任务。如果顶部 activity 完成了一项任务,Android 将返回到上次处于活跃状态的任务。此外,如果非顶部 activity 完成其任务,Android 会返回到主屏幕;它不会阻止此非顶部 activity 完成。
  • 防止从其他应用启动任意 activity 进入您自己的任务。此变更可防止恶意应用通过创建看似来自其他应用的 activity 来对用户进行钓鱼式攻击。
  • 阻止将非可见窗口纳入后台 activity 启动的考虑范围。这有助于防止恶意应用滥用后台活动启动来向用户显示不必要或恶意的内容。

Intents mais seguras

Android 15 introduces new optional security measures to make intents safer and more robust. These changes are aimed at preventing potential vulnerabilities and misuse of intents that can be exploited by malicious apps. There are two main improvements to the security of intents in Android 15:

  • Match target intent-filters: Intents that target specific components must accurately match the target's intent-filter specifications. If you send an intent to launch another app's activity, the target intent component needs to align with the receiving activity's declared intent-filters.
  • Intents must have actions: Intents without an action will no longer match any intent-filters. This means that intents used to start activities or services must have a clearly defined action.

In order to check how your app responds to these changes, use StrictMode in your app. To see detailed logs about Intent usage violations, add the following method:

Kotlin

fun onCreate() {
    StrictMode.setVmPolicy(VmPolicy.Builder()
        .detectUnsafeIntentLaunch()
        .build()
    )
}

Java

public void onCreate() {
    StrictMode.setVmPolicy(new VmPolicy.Builder()
            .detectUnsafeIntentLaunch()
            .build());
}

Experiência do usuário e interface do sistema

O Android 15 inclui algumas mudanças que visam criar uma experiência do usuário mais consistente e intuitiva.

Mudanças no encarte da janela

Android 15 中与窗口内边距相关的两项变更:默认强制执行边到边,此外还有配置变更,例如系统栏的默认配置。

全面实施政策

Apps are edge-to-edge by default on devices running Android 15 if the app is targeting Android 15 (API level 35).

An app that targets Android 14 and is not edge-to-edge on an Android 15 device.


An app that targets Android 15 (API level 35) and is edge-to-edge on an Android 15 device. This app mostly uses Material 3 Compose Components that automatically apply insets. This screen is not negatively impacted by the Android 15 edge-to-edge enforcement.

This is a breaking change that might negatively impact your app's UI. The changes affect the following UI areas:

  • Gesture handle navigation bar
    • Transparent by default.
    • Bottom offset is disabled so content draws behind the system navigation bar unless insets are applied.
    • setNavigationBarColor and R.attr#navigationBarColor are deprecated and don't affect gesture navigation.
    • setNavigationBarContrastEnforced and R.attr#navigationBarContrastEnforced continue to have no effect on gesture navigation.
  • 3-button navigation
    • Opacity set to 80% by default, with color possibly matching the window background.
    • Bottom offset disabled so content draws behind the system navigation bar unless insets are applied.
    • setNavigationBarColor and R.attr#navigationBarColor are set to match the window background by default. The window background must be a color drawable for this default to apply. This API is deprecated but continues to affect 3-button navigation.
    • setNavigationBarContrastEnforced and R.attr#navigationBarContrastEnforced is true by default, which adds an 80% opaque background across 3-button navigation.
  • Status bar
    • Transparent by default.
    • The top offset is disabled so content draws behind the status bar unless insets are applied.
    • setStatusBarColor and R.attr#statusBarColor are deprecated and have no effect on Android 15.
    • setStatusBarContrastEnforced and R.attr#statusBarContrastEnforced are deprecated but still have an effect on Android 15.
  • Display cutout
    • layoutInDisplayCutoutMode of non-floating windows must be LAYOUT_IN_DISPLAY_CUTOUT_MODE_ALWAYS. SHORT_EDGES, NEVER, and DEFAULT are interpreted as ALWAYS so that users don't see a black bar caused by the display cutout and appear edge-to-edge.

The following example shows an app before and after targeting Android 15 (API level 35), and before and after applying insets. This example is not comprehensive, this might appear differently on Android Auto.

An app that targets Android 14 and is not edge-to-edge on an Android 15 device.
An app that targets Android 15 (API level 35) and is edge-to-edge on an Android 15 device. However, many elements are now hidden by the status bar, 3-button navigation bar, or display cutout due to the Android 15 edge-to-edge enforcements. Hidden UI includes the Material 2 top app bar, floating action buttons, and list items.
An app that targets Android 15 (API level 35), is edge to edge on an Android 15 device and applies insets so that UI is not hidden.
What to check if your app is already edge-to-edge

If your app is already edge-to-edge and applies insets, you are mostly unimpacted, except in the following scenarios. However, even if you think you aren't impacted, we recommend you test your app.

  • You have a non-floating window, such as an Activity that uses SHORT_EDGES, NEVER or DEFAULT instead of LAYOUT_IN_DISPLAY_CUTOUT_MODE_ALWAYS. If your app crashes on launch, this might be due to your splashscreen. You can either upgrade the core splashscreen dependency to 1.2.0-alpha01 or later or set window.attributes.layoutInDisplayCutoutMode = WindowManager.LayoutInDisplayCutoutMode.always.
  • There might be lower-traffic screens with occluded UI. Verify these less-visited screens don't have occluded UI. Lower-traffic screens include:
    • Onboarding or sign-in screens
    • Settings pages
What to check if your app is not already edge-to-edge

If your app is not already edge-to-edge, you are most likely impacted. In addition to the scenarios for apps that are already edge-to-edge, you should consider the following:

  • If your app uses Material 3 Components ( androidx.compose.material3) in compose, such as TopAppBar, BottomAppBar, and NavigationBar, these components are likely not impacted because they automatically handle insets.
  • If your app is using Material 2 Components ( androidx.compose.material) in Compose, these components don't automatically handle insets. However, you can get access to the insets and apply them manually. In androidx.compose.material 1.6.0 and later, use the windowInsets parameter to apply the insets manually for BottomAppBar, TopAppBar, BottomNavigation, and NavigationRail. Likewise, use the contentWindowInsets parameter for Scaffold.
  • If your app uses views and Material Components (com.google.android.material), most views-based Material Components such as BottomNavigationView, BottomAppBar, NavigationRailView, or NavigationView, handle insets and require no additional work. However, you need to add android:fitsSystemWindows="true" if using AppBarLayout.
  • For custom composables, apply the insets manually as padding. If your content is within a Scaffold, you can consume insets using the Scaffold padding values. Otherwise, apply padding using one of the WindowInsets.
  • If your app is using views and BottomSheet, SideSheet or custom containers, apply padding using ViewCompat.setOnApplyWindowInsetsListener. For RecyclerView, apply padding using this listener and also add clipToPadding="false".
What to check if your app must offer custom background protection

If your app must offer custom background protection to 3-button navigation or the status bar, your app should place a composable or view behind the system bar using WindowInsets.Type#tappableElement() to get the 3-button navigation bar height or WindowInsets.Type#statusBars.

Additional edge-to-edge resources

See the Edge to Edge Views and Edge to Edge Compose guides for additional considerations on applying insets.

Deprecated APIs

The following APIs are deprecated but not disabled:

The following APIs are deprecated and disabled:

稳定配置

Se o app for direcionado ao Android 15 (API de nível 35) ou versões mais recentes, Configuration não vai mais excluir as barras de sistema. Se você usar o tamanho da tela na classe Configuration para cálculo de layout, substitua por alternativas melhores, como um ViewGroup, WindowInsets ou WindowMetricsCalculator adequado, dependendo da sua necessidade.

O Configuration está disponível desde a API 1. Normalmente, ele é obtido de Activity.onConfigurationChanged. Ele fornece informações como densidade, orientação e tamanhos da janela. Uma característica importante sobre os tamanhos de janela retornados de Configuration é que ele excluía as barras de sistema.

O tamanho da configuração é usado normalmente para seleção de recursos, como /res/layout-h500dp, e ainda é um caso de uso válido. No entanto, o uso para cálculo de layout sempre foi desencorajado. Se você estiver fazendo isso, pare agora. Substitua o uso de Configuration por algo mais adequado, dependendo do seu caso de uso.

Se você usar para calcular o layout, use um ViewGroup adequado, como CoordinatorLayout ou ConstraintLayout. Se você usar para determinar a altura da barra de navegação do sistema, use WindowInsets. Se quiser saber o tamanho atual da janela do app, use computeCurrentWindowMetrics.

A lista a seguir descreve os campos afetados por essa mudança:

O atributo "elegantTextHeight" tem como padrão o valor "true".

For apps targeting Android 15 (API level 35), the elegantTextHeight TextView attribute becomes true by default, replacing the compact font used by default with some scripts that have large vertical metrics with one that is much more readable. The compact font was introduced to prevent breaking layouts; Android 13 (API level 33) prevents many of these breakages by allowing the text layout to stretch the vertical height utilizing the fallbackLineSpacing attribute.

In Android 15, the compact font still remains in the system, so your app can set elegantTextHeight to false to get the same behavior as before, but it is unlikely to be supported in upcoming releases. So, if your app supports the following scripts: Arabic, Lao, Myanmar, Tamil, Gujarati, Kannada, Malayalam, Odia, Telugu or Thai, test your app by setting elegantTextHeight to true.

elegantTextHeight behavior for apps targeting Android 14 (API level 34) and lower.
elegantTextHeight behavior for apps targeting Android 15.

Mudanças na largura da TextView para formas de letras complexas

在以前的 Android 版本中,某些具有复杂形状的手写字体或语言可能会在上一个或下一个字符的区域绘制字母。在某些情况下,此类字母会在开头或结尾处被剪裁。从 Android 15 开始,TextView 会分配宽度,以便为此类字母绘制足够的空间,并允许应用请求向左额外添加内边距以防止剪裁。

由于此更改会影响 TextView 确定宽度的方式,因此如果应用以 Android 15(API 级别 35)或更高版本为目标平台,TextView 会默认分配更多宽度。您可以通过对 TextView 调用 setUseBoundsForWidth API 来启用或停用此行为。

由于添加左内边距可能会导致现有布局未对齐,因此默认情况下不会添加内边距,即使以 Android 15 或更高版本为目标平台的应用也是如此。不过,您可以通过调用 setShiftDrawingOffsetForStartOverhang 添加额外的内边距以防止剪裁。

以下示例展示了这些更改如何改进某些字体和语言的文本布局。

采用手写体字体的英语文本的标准布局。部分字母被截断。对应的 XML 如下:

<TextView
    android:fontFamily="cursive"
    android:text="java" />
相同英语文本的布局,增加了宽度和内边距。以下是相应的 XML:

<TextView
    android:fontFamily="cursive"
    android:text="java"
    android:useBoundsForWidth="true"
    android:shiftDrawingOffsetForStartOverhang="true" />
泰语文本的标准布局。部分字母被截断。 以下是相应的 XML:

<TextView
    android:text="คอมพิวเตอร์" />
相同泰语文本的布局,增加了宽度和内边距。以下是相应的 XML:

<TextView
    android:text="คอมพิวเตอร์"
    android:useBoundsForWidth="true"
    android:shiftDrawingOffsetForStartOverhang="true" />

Altura da linha padrão sensível à localidade para EditText

在较低版本的 Android 中,文本布局会拉伸文本的高度,以满足与当前语言区域匹配的字体的行高。例如,如果内容是日语,由于日语字体的行高略高于拉丁字体,因此文本的高度会略高。不过,尽管行高存在这些差异,但无论使用的是哪种语言区域,EditText 元素的大小都是统一的,如下图所示:

三个框,表示可以包含英语 (en)、日语 (ja) 和缅甸语 (my) 文本的 EditText 元素。EditText 的高度相同,即使这些语言的行高各不相同。

对于以 Android 15(API 级别 35)为目标平台的应用,现在为 EditText 预留了最小行高,以匹配指定语言区域的参考字体,如下图所示:

三个框,表示可以包含英语 (en)、日语 (ja) 和缅甸语 (my) 文本的 EditText 元素。EditText 的高度现在包含足够的空间来容纳这些语言字体的默认行高。

如有需要,您的应用可以将 useLocalePreferredLineHeightForMinimum 属性指定为 false,以恢复之前的行为;您的应用还可以在 Kotlin 和 Java 中使用 setMinimumFontMetrics API 设置自定义最小垂直指标。

Câmera e mídia

O Android 15 faz as seguintes mudanças no comportamento de mídia e câmera para apps direcionados ao Android 15 ou versões mais recentes.

Restrições ao solicitar a seleção de áudio

以 Android 15(API 级别 35)为目标平台的应用必须是顶部应用或正在运行前台服务,才能请求音频焦点。如果应用在未满足上述任一要求的情况下尝试请求焦点,调用将返回 AUDIOFOCUS_REQUEST_FAILED

如需详细了解音频焦点,请参阅管理音频焦点

Atualização das restrições não SDK

O Android 15 inclui listas atualizadas de interfaces não SDK restritas com base na colaboração com desenvolvedores Android e nos testes internos mais recentes. Antes de restringirmos interfaces não SDK, sempre que possível, garantimos que haja alternativas públicas disponíveis.

Caso seu app não seja destinado ao Android 15, é possível que algumas dessas mudanças não afetem você imediatamente. No entanto, embora seja possível que seu app acesse algumas interfaces não SDK dependendo do nível da API de destino do app, o uso de qualquer método ou campo não SDK sempre apresenta um alto risco de corromper o app.

Se você não souber se seu app usa interfaces não SDK, poderá testá-lo para descobrir. Se ele depende de interfaces não SDK, comece a planejar uma migração para alternativas SDK. No entanto, entendemos que alguns apps têm casos de uso válidos para interfaces não SDK. Se você não encontrar uma alternativa para deixar de usar uma interface não SDK em um recurso no seu app, solicite uma nova API pública.

如需详细了解此 Android 版本中的变更,请参阅 Android 15 中有关限制非 SDK 接口的更新。如需全面了解有关非 SDK 接口的详细信息,请参阅对非 SDK 接口的限制