InferenceInput
class InferenceInput
| kotlin.Any | |
| ↳ | android.adservices.ondevicepersonalization.InferenceInput | 
Contains all the information needed for a run of model inference. The input of android.adservices.ondevicepersonalization.ModelManager#run.
Summary
| Nested classes | |
|---|---|
| 
            
             A builder for   | 
        |
| Public methods | |
|---|---|
| Boolean | 
            
             Indicates whether some other object is "equal to" this one.  | 
        
| Int | 
            
             The number of input examples.  | 
        
| ByteArray | 
            getData()A byte array that holds input data.  | 
        
| InferenceOutput | 
            
             The empty InferenceOutput representing the expected output structure.  | 
        
| Array<Any!> | 
            
             Note: use   | 
        
| InferenceInput.Params | 
            
             The configuration that controls runtime interpreter behavior.  | 
        
| Int | 
            hashCode() | 
        
Public methods
equals
fun equals(other: Any?): Boolean
Indicates whether some other object is "equal to" this one.
 The equals method implements an equivalence relation on non-null object references: 
- It is reflexive: for any non-null reference value 
x,x.equals(x)should returntrue. - It is symmetric: for any non-null reference values 
xandy,x.equals(y)should returntrueif and only ify.equals(x)returnstrue. - It is transitive: for any non-null reference values 
x,y, andz, ifx.equals(y)returnstrueandy.equals(z)returnstrue, thenx.equals(z)should returntrue. - It is consistent: for any non-null reference values 
xandy, multiple invocations ofx.equals(y)consistently returntrueor consistently returnfalse, provided no information used inequalscomparisons on the objects is modified. - For any non-null reference value 
x,x.equals(null)should returnfalse. 
An equivalence relation partitions the elements it operates on into equivalence classes; all the members of an equivalence class are equal to each other. Members of an equivalence class are substitutable for each other, at least for some purposes.
| Parameters | |
|---|---|
obj | 
            the reference object with which to compare. | 
o | 
            This value may be null. | 
          
| Return | |
|---|---|
Boolean | 
            true if this object is the same as the obj argument; false otherwise. | 
          
getBatchSize
fun getBatchSize(): Int
The number of input examples. Adopter can set this field to run batching inference. The batch size is 1 by default. The batch size should match the input data size.
getData
fun getData(): ByteArray
A byte array that holds input data. The inputs should be in the same order as inputs of the model.
For LiteRT, this field is mapped to inputs of runForMultipleInputsOutputs: https://www.tensorflow.org/lite/api_docs/java/org/tensorflow/lite/InterpreterApi#parameters_9
<code>String[] input0 = {"foo", "bar"}; // string tensor shape is [2]. int[] input1 = new int[]{3, 2, 1}; // int tensor shape is [3]. Object[] inputData = {input0, input1, ...}; byte[] data = serializeObject(inputData); </code>
For Executorch model, this field is a serialized EValue array.
| Return | |
|---|---|
ByteArray | 
            This value cannot be null. | 
          
getExpectedOutputStructure
fun getExpectedOutputStructure(): InferenceOutput
The empty InferenceOutput representing the expected output structure. For LiteRT, the inference code will verify whether this expected output structure matches model output signature.
If a model produce string tensors:
<code>String[] output = new String[3][2]; // Output tensor shape is [3, 2]. HashMap<Integer, Object> outputs = new HashMap<>(); outputs.put(0, output); expectedOutputStructure = new InferenceOutput.Builder().setDataOutputs(outputs).build(); </code>
| Return | |
|---|---|
InferenceOutput | 
            This value cannot be null. | 
          
getInputData
fun getInputData(): Array<Any!>
Note: use InferenceInput.getData() instead. 
An array of input data. The inputs should be in the same order as inputs of the model.
For example, if a model takes multiple inputs:
<code>String[] input0 = {"foo", "bar"}; // string tensor shape is [2]. int[] input1 = new int[]{3, 2, 1}; // int tensor shape is [3]. Object[] inputData = {input0, input1, ...}; </code>
| Return | |
|---|---|
Array<Any!> | 
            This value cannot be null. | 
          
getParams
fun getParams(): InferenceInput.Params
The configuration that controls runtime interpreter behavior.
| Return | |
|---|---|
InferenceInput.Params | 
            This value cannot be null. |