MethodHandles
public
class
MethodHandles
extends Object
java.lang.Object | |
↳ | java.lang.invoke.MethodHandles |
This class consists exclusively of static methods that operate on or return method handles. They fall into several categories:
- Lookup methods which help create method handles for methods and fields.
- Combinator methods, which combine or transform pre-existing method handles into new ones.
- Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
Summary
Nested classes | |
---|---|
class |
MethodHandles.Lookup
A lookup object is a factory for creating method handles, when the creation requires access checking. |
Public methods | |
---|---|
static
MethodHandle
|
arrayConstructor(Class<?> arrayClass)
Produces a method handle constructing arrays of a desired type,
as if by the |
static
MethodHandle
|
arrayElementGetter(Class<?> arrayClass)
Produces a method handle giving read access to elements of an array. |
static
MethodHandle
|
arrayElementSetter(Class<?> arrayClass)
Produces a method handle giving write access to elements of an array. |
static
VarHandle
|
arrayElementVarHandle(Class<?> arrayClass)
Produces a VarHandle giving access to elements of an array of type
|
static
MethodHandle
|
arrayLength(Class<?> arrayClass)
Produces a method handle returning the length of an array,
as if by the |
static
VarHandle
|
byteArrayViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)
Produces a VarHandle giving access to elements of a |
static
VarHandle
|
byteBufferViewVarHandle(Class<?> viewArrayClass, ByteOrder byteOrder)
Produces a VarHandle giving access to elements of a |
static
MethodHandle
|
catchException(MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)
Makes a method handle which adapts a target method handle, by running it inside an exception handler. |
static
MethodHandle
|
collectArguments(MethodHandle target, int pos, MethodHandle filter)
Adapts a target method handle by pre-processing a sub-sequence of its arguments with a filter (another method handle). |
static
MethodHandle
|
constant(Class<?> type, Object value)
Produces a method handle of the requested return type which returns the given constant value every time it is invoked. |
static
MethodHandle
|
countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)
Constructs a loop that counts over a range of numbers. |
static
MethodHandle
|
countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body)
Constructs a loop that runs a given number of iterations. |
static
MethodHandle
|
doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred)
Constructs a |
static
MethodHandle
|
dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes)
Produces a method handle which will discard some placeholder arguments before calling some other specified target method handle. |
static
MethodHandle
|
dropArguments(MethodHandle target, int pos, Class...<?> valueTypes)
Produces a method handle which will discard some placeholder arguments before calling some other specified target method handle. |
static
MethodHandle
|
dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos)
Adapts a target method handle to match the given parameter type list. |
static
MethodHandle
|
dropReturn(MethodHandle target)
Drop the return value of the target handle (if any). |
static
MethodHandle
|
empty(MethodType type)
Produces a method handle of the requested type which ignores any arguments, does nothing, and returns a suitable default depending on the return type. |
static
MethodHandle
|
exactInvoker(MethodType type)
Produces a special invoker method handle which can be used to
invoke any method handle of the given type, as if by |
static
MethodHandle
|
explicitCastArguments(MethodHandle target, MethodType newType)
Produces a method handle which adapts the type of the given method handle to a new type by pairwise argument and return type conversion. |
static
MethodHandle
|
filterArguments(MethodHandle target, int pos, MethodHandle... filters)
Adapts a target method handle by pre-processing one or more of its arguments, each with its own unary filter function, and then calling the target with each pre-processed argument replaced by the result of its corresponding filter function. |
static
MethodHandle
|
filterReturnValue(MethodHandle target, MethodHandle filter)
Adapts a target method handle by post-processing its return value (if any) with a filter (another method handle). |
static
MethodHandle
|
foldArguments(MethodHandle target, MethodHandle combiner)
Adapts a target method handle by pre-processing some of its arguments, and then calling the target with the result of the pre-processing, inserted into the original sequence of arguments. |
static
MethodHandle
|
foldArguments(MethodHandle target, int pos, MethodHandle combiner)
Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then calling the target with the result of the pre-processing, inserted into the original sequence of arguments just before the folded arguments. |
static
MethodHandle
|
guardWithTest(MethodHandle test, MethodHandle target, MethodHandle fallback)
Makes a method handle which adapts a target method handle, by guarding it with a test, a boolean-valued method handle. |
static
MethodHandle
|
identity(Class<?> type)
Produces a method handle which returns its sole argument when invoked. |
static
MethodHandle
|
insertArguments(MethodHandle target, int pos, Object... values)
Provides a target method handle with one or more bound arguments in advance of the method handle's invocation. |
static
MethodHandle
|
invoker(MethodType type)
Produces a special invoker method handle which can be used to
invoke any method handle compatible with the given type, as if by |
static
MethodHandle
|
iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body)
Constructs a loop that ranges over the values produced by an |
static
MethodHandles.Lookup
|
lookup()
Returns a |
static
MethodHandle
|
loop(MethodHandle... clauses)
Constructs a method handle representing a loop with several loop variables that are updated and checked upon each iteration. |
static
MethodHandle
|
permuteArguments(MethodHandle target, MethodType newType, int... reorder)
Produces a method handle which adapts the calling sequence of the given method handle to a new type, by reordering the arguments. |
static
MethodHandles.Lookup
|
privateLookupIn(Class<?> targetClass, MethodHandles.Lookup lookup)
Returns a |
static
MethodHandles.Lookup
|
publicLookup()
Returns a |
static
<T extends Member>
T
|
reflectAs(Class<T> expected, MethodHandle target)
Performs an unchecked "crack" of a direct method handle. |
static
MethodHandle
|
spreadInvoker(MethodType type, int leadingArgCount)
Produces a method handle which will invoke any method handle of the
given |
static
MethodHandle
|
tableSwitch(MethodHandle fallback, MethodHandle... targets)
Creates a table switch method handle, which can be used to switch over a set of target method handles, based on a given target index, called selector. |
static
MethodHandle
|
throwException(Class<?> returnType, Class<? extends Throwable> exType)
Produces a method handle which will throw exceptions of the given |
static
MethodHandle
|
tryFinally(MethodHandle target, MethodHandle cleanup)
Makes a method handle that adapts a |
static
MethodHandle
|
varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type)
Produces a special invoker method handle which can be used to invoke a signature-polymorphic access mode method on any VarHandle whose associated access mode type is compatible with the given type. |
static
MethodHandle
|
varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type)
Produces a special invoker method handle which can be used to invoke a signature-polymorphic access mode method on any VarHandle whose associated access mode type is compatible with the given type. |
static
MethodHandle
|
whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body)
Constructs a |
static
MethodHandle
|
zero(Class<?> type)
Produces a constant method handle of the requested return type which returns the default value for that type every time it is invoked. |
Inherited methods | |
---|---|
Public methods
arrayConstructor
public static MethodHandle arrayConstructor (Class<?> arrayClass)
Produces a method handle constructing arrays of a desired type,
as if by the anewarray
bytecode.
The return type of the method handle will be the array type.
The type of its sole argument will be int
, which specifies the size of the array.
If the returned method handle is invoked with a negative
array size, a NegativeArraySizeException
will be thrown.
Parameters | |
---|---|
arrayClass |
Class : an array type |
Returns | |
---|---|
MethodHandle |
a method handle which can create arrays of the given type |
Throws | |
---|---|
NullPointerException |
if the argument is null |
IllegalArgumentException |
if arrayClass is not an array type |
See also:
arrayElementGetter
public static MethodHandle arrayElementGetter (Class<?> arrayClass)
Produces a method handle giving read access to elements of an array.
The type of the method handle will have a return type of the array's
element type. Its first argument will be the array type,
and the second will be int
.
Parameters | |
---|---|
arrayClass |
Class : an array type |
Returns | |
---|---|
MethodHandle |
a method handle which can load values from the given array type |
Throws | |
---|---|
NullPointerException |
if the argument is null |
IllegalArgumentException |
if arrayClass is not an array type |
arrayElementSetter
public static MethodHandle arrayElementSetter (Class<?> arrayClass)
Produces a method handle giving write access to elements of an array. The type of the method handle will have a void return type. Its last argument will be the array's element type. The first and second arguments will be the array type and int.
Parameters | |
---|---|
arrayClass |
Class : the class of an array |
Returns | |
---|---|
MethodHandle |
a method handle which can store values into the array type |
Throws | |
---|---|
NullPointerException |
if the argument is null |
IllegalArgumentException |
if arrayClass is not an array type |
arrayElementVarHandle
public static VarHandle arrayElementVarHandle (Class<?> arrayClass)
Produces a VarHandle giving access to elements of an array of type
arrayClass
. The VarHandle's variable type is the component type
of arrayClass
and the list of coordinate types is
(arrayClass, int)
, where the int
coordinate type
corresponds to an argument that is an index into an array.
Certain access modes of the returned VarHandle are unsupported under the following conditions:
- if the component type is anything other than
byte
,short
,char
,int
,long
,float
, ordouble
then numeric atomic update access modes are unsupported. - if the field type is anything other than
boolean
,byte
,short
,char
,int
orlong
then bitwise atomic update access modes are unsupported.
If the component type is float
or double
then numeric
and atomic update access modes compare values using their bitwise
representation (see Float.floatToRawIntBits
and
Double.doubleToRawLongBits
, respectively).
API Note:
- Bitwise comparison of
float
values ordouble
values, as performed by the numeric and atomic update access modes, differ from the primitive==
operator and theFloat.equals
andDouble.equals
methods, specifically with respect to comparing NaN values or comparing-0.0
with+0.0
. Care should be taken when performing a compare and set or a compare and exchange operation with such values since the operation may unexpectedly fail. There are many possible NaN values that are considered to beNaN
in Java, although no IEEE 754 floating-point operation provided by Java can distinguish between them. Operation failure can occur if the expected or witness value is a NaN value and it is transformed (perhaps in a platform specific manner) into another NaN value, and thus has a different bitwise representation (seeFloat.intBitsToFloat
orDouble.longBitsToDouble
for more details). The values-0.0
and+0.0
have different bitwise representations but are considered equal when using the primitive==
operator. Operation failure can occur if, for example, a numeric algorithm computes an expected value to be say-0.0
and previously computed the witness value to be say+0.0
.
Parameters | |
---|---|
arrayClass |
Class : the class of an array, of type T[] |
Returns | |
---|---|
VarHandle |
a VarHandle giving access to elements of an array |
Throws | |
---|---|
NullPointerException |
if the arrayClass is null |
IllegalArgumentException |
if arrayClass is not an array type |
arrayLength
public static MethodHandle arrayLength (Class<?> arrayClass)
Produces a method handle returning the length of an array,
as if by the arraylength
bytecode.
The type of the method handle will have int
as return type,
and its sole argument will be the array type.
If the returned method handle is invoked with a null
array reference, a NullPointerException
will be thrown.
Parameters | |
---|---|
arrayClass |
Class : an array type |
Returns | |
---|---|
MethodHandle |
a method handle which can retrieve the length of an array of the given array type |
Throws | |
---|---|
NullPointerException |
if the argument is null |
IllegalArgumentException |
if arrayClass is not an array type |
byteArrayViewVarHandle
public static VarHandle byteArrayViewVarHandle (Class<?> viewArrayClass, ByteOrder byteOrder)
Produces a VarHandle giving access to elements of a byte[]
array
viewed as if it were a different primitive array type, such as
int[]
or long[]
.
The VarHandle's variable type is the component type of
viewArrayClass
and the list of coordinate types is
(byte[], int)
, where the int
coordinate type
corresponds to an argument that is an index into a byte[]
array.
The returned VarHandle accesses bytes at an index in a byte[]
array, composing bytes to or from a value of the component type of
viewArrayClass
according to the given endianness.
The supported component types (variables types) are short
,
char
, int
, long
, float
and
double
.
Access of bytes at a given index will result in an
IndexOutOfBoundsException
if the index is less than 0
or greater than the byte[]
array length minus the size (in bytes)
of T
.
Access of bytes at an index may be aligned or misaligned for T
,
with respect to the underlying memory address, A
say, associated
with the array and index.
If access is misaligned then access for anything other than the
get
and set
access modes will result in an
IllegalStateException
. In such cases atomic access is only
guaranteed with respect to the largest power of two that divides the GCD
of A
and the size (in bytes) of T
.
If access is aligned then following access modes are supported and are
guaranteed to support atomic access:
- read write access modes for all
T
, with the exception of access modesget
andset
forlong
anddouble
on 32-bit platforms. - atomic update access modes for
int
,long
,float
ordouble
. (Future major platform releases of the JDK may support additional types for certain currently unsupported access modes.) - numeric atomic update access modes for
int
andlong
. (Future major platform releases of the JDK may support additional numeric types for certain currently unsupported access modes.) - bitwise atomic update access modes for
int
andlong
. (Future major platform releases of the JDK may support additional numeric types for certain currently unsupported access modes.)
Misaligned access, and therefore atomicity guarantees, may be determined
for byte[]
arrays without operating on a specific array. Given
an index
, T
and it's corresponding boxed type,
T_BOX
, misalignment may be determined as follows:
int sizeOfT = T_BOX.BYTES; // size in bytes of T
int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
alignmentOffset(0, sizeOfT);
int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
boolean isMisaligned = misalignedAtIndex != 0;
If the variable type is float
or double
then atomic
update access modes compare values using their bitwise representation
(see Float.floatToRawIntBits
and
Double.doubleToRawLongBits
, respectively).
Parameters | |
---|---|
viewArrayClass |
Class : the view array class, with a component type of
type T |
byteOrder |
ByteOrder : the endianness of the view array elements, as
stored in the underlying byte array |
Returns | |
---|---|
VarHandle |
a VarHandle giving access to elements of a byte[] array
viewed as if elements corresponding to the components type of the view
array class |
Throws | |
---|---|
NullPointerException |
if viewArrayClass or byteOrder is null |
IllegalArgumentException |
if viewArrayClass is not an array type |
UnsupportedOperationException |
if the component type of viewArrayClass is not supported as a variable type |
byteBufferViewVarHandle
public static VarHandle byteBufferViewVarHandle (Class<?> viewArrayClass, ByteOrder byteOrder)
Produces a VarHandle giving access to elements of a ByteBuffer
viewed as if it were an array of elements of a different primitive
component type to that of byte
, such as int[]
or
long[]
.
The VarHandle's variable type is the component type of
viewArrayClass
and the list of coordinate types is
(ByteBuffer, int)
, where the int
coordinate type
corresponds to an argument that is an index into a byte[]
array.
The returned VarHandle accesses bytes at an index in a
ByteBuffer
, composing bytes to or from a value of the component
type of viewArrayClass
according to the given endianness.
The supported component types (variables types) are short
,
char
, int
, long
, float
and
double
.
Access will result in a ReadOnlyBufferException
for anything
other than the read access modes if the ByteBuffer
is read-only.
Access of bytes at a given index will result in an
IndexOutOfBoundsException
if the index is less than 0
or greater than the ByteBuffer
limit minus the size (in bytes) of
T
.
Access of bytes at an index may be aligned or misaligned for T
,
with respect to the underlying memory address, A
say, associated
with the ByteBuffer
and index.
If access is misaligned then access for anything other than the
get
and set
access modes will result in an
IllegalStateException
. In such cases atomic access is only
guaranteed with respect to the largest power of two that divides the GCD
of A
and the size (in bytes) of T
.
If access is aligned then following access modes are supported and are
guaranteed to support atomic access:
- read write access modes for all
T
, with the exception of access modesget
andset
forlong
anddouble
on 32-bit platforms. - atomic update access modes for
int
,long
,float
ordouble
. (Future major platform releases of the JDK may support additional types for certain currently unsupported access modes.) - numeric atomic update access modes for
int
andlong
. (Future major platform releases of the JDK may support additional numeric types for certain currently unsupported access modes.) - bitwise atomic update access modes for
int
andlong
. (Future major platform releases of the JDK may support additional numeric types for certain currently unsupported access modes.)
Misaligned access, and therefore atomicity guarantees, may be determined
for a ByteBuffer
, bb
(direct or otherwise), an
index
, T
and it's corresponding boxed type,
T_BOX
, as follows:
int sizeOfT = T_BOX.BYTES; // size in bytes of T
ByteBuffer bb = ...
int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
boolean isMisaligned = misalignedAtIndex != 0;
If the variable type is float
or double
then atomic
update access modes compare values using their bitwise representation
(see Float.floatToRawIntBits
and
Double.doubleToRawLongBits
, respectively).
Parameters | |
---|---|
viewArrayClass |
Class : the view array class, with a component type of
type T |
byteOrder |
ByteOrder : the endianness of the view array elements, as
stored in the underlying ByteBuffer (Note this overrides the
endianness of a ByteBuffer ) |
Returns | |
---|---|
VarHandle |
a VarHandle giving access to elements of a ByteBuffer
viewed as if elements corresponding to the components type of the view
array class |
Throws | |
---|---|
NullPointerException |
if viewArrayClass or byteOrder is null |
IllegalArgumentException |
if viewArrayClass is not an array type |
UnsupportedOperationException |
if the component type of viewArrayClass is not supported as a variable type |
catchException
public static MethodHandle catchException (MethodHandle target, Class<? extends Throwable> exType, MethodHandle handler)
Makes a method handle which adapts a target method handle, by running it inside an exception handler. If the target returns normally, the adapter returns that value. If an exception matching the specified type is thrown, the fallback handle is called instead on the exception, plus the original arguments.
The target and handler must have the same corresponding
argument and return types, except that handler may omit trailing arguments
(similarly to the predicate in guardWithTest
).
Also, the handler must have an extra leading parameter of exType
or a supertype.
Here is pseudocode for the resulting adapter. In the code, T
represents the return type of the target
and handler
,
and correspondingly that of the resulting adapter; A
/a
,
the types and values of arguments to the resulting handle consumed by
handler
; and B
/b
, those of arguments to the
resulting handle discarded by handler
.
Note that the saved arguments (T target(A..., B...); T handler(ExType, A...); T adapter(A... a, B... b) { try { return target(a..., b...); } catch (ExType ex) { return handler(ex, a...); } }
a...
in the pseudocode) cannot
be modified by execution of the target, and so are passed unchanged
from the caller to the handler, if the handler is invoked.
The target and handler must return the same type, even if the handler
always throws. (This might happen, for instance, because the handler
is simulating a finally
clause).
To create such a throwing handler, compose the handler creation logic
with throwException
,
in order to create a method handle of the correct return type.
Parameters | |
---|---|
target |
MethodHandle : method handle to call |
exType |
Class : the type of exception which the handler will catch |
handler |
MethodHandle : method handle to call if a matching exception is thrown |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified try/catch logic |
Throws | |
---|---|
NullPointerException |
if any argument is null |
IllegalArgumentException |
if handler does not accept
the given exception type, or if the method handle types do
not match in their return types and their
corresponding parameters |
See also:
collectArguments
public static MethodHandle collectArguments (MethodHandle target, int pos, MethodHandle filter)
Adapts a target method handle by pre-processing a sub-sequence of its arguments with a filter (another method handle). The pre-processed arguments are replaced by the result (if any) of the filter function. The target is then called on the modified (usually shortened) argument list.
If the filter returns a value, the target must accept that value as
its argument in position pos
, preceded and/or followed by
any arguments not passed to the filter.
If the filter returns void, the target must accept all arguments
not passed to the filter.
No arguments are reordered, and a result returned from the filter
replaces (in order) the whole subsequence of arguments originally
passed to the adapter.
The argument types (if any) of the filter
replace zero or one argument types of the target, at position pos
,
in the resulting adapted method handle.
The return type of the filter (if any) must be identical to the
argument type of the target at position pos
, and that target argument
is supplied by the return value of the filter.
In all cases, pos
must be greater than or equal to zero, and
pos
must also be less than or equal to the target's arity.
Example:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle deepToString = publicLookup() .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); MethodHandle ts1 = deepToString.asCollector(String[].class, 1); assertEquals("[strange]", (String) ts1.invokeExact("strange")); MethodHandle ts2 = deepToString.asCollector(String[].class, 2); assertEquals("[up, down]", (String) ts2.invokeExact("up", "down")); MethodHandle ts3 = deepToString.asCollector(String[].class, 3); MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2); assertEquals("[top, [up, down], strange]", (String) ts3_ts2.invokeExact("top", "up", "down", "strange")); MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1); assertEquals("[top, [up, down], [strange]]", (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange")); MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3); assertEquals("[top, [[up, down, strange], charm], bottom]", (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
Here is pseudocode for the resulting adapter:
T target(A...,V,C...); V filter(B...); T adapter(A... a,B... b,C... c) { V v = filter(b...); return target(a...,v,c...); } // and if the filter has no arguments: T target2(A...,V,C...); V filter2(); T adapter2(A... a,C... c) { V v = filter2(); return target2(a...,v,c...); } // and if the filter has a void return: T target3(A...,C...); void filter3(B...); void adapter3(A... a,B... b,C... c) { filter3(b...); return target3(a...,c...); }
A collection adapter collectArguments(mh, 0, coll)
is equivalent to
one which first "folds" the affected arguments, and then drops them, in separate
steps as follows:
If the target method handle consumes no arguments besides than the result (if any) of the filtermh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2 mh = MethodHandles.foldArguments(mh, coll); //step 1
coll
, then collectArguments(mh, 0, coll)
is equivalent to filterReturnValue(coll, mh)
.
If the filter method handle coll
consumes one argument and produces
a non-void result, then collectArguments(mh, N, coll)
is equivalent to filterArguments(mh, N, coll)
.
Other equivalences are possible but would require argument permutation.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after filtering the subsequence of arguments |
pos |
int : the position of the first adapter argument to pass to the filter,
and/or the target argument which receives the result of the filter |
filter |
MethodHandle : method handle to call on the subsequence of arguments |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified argument subsequence filtering logic |
Throws | |
---|---|
NullPointerException |
if either argument is null |
IllegalArgumentException |
if the return type of filter
is non-void and is not the same as the pos argument of the target,
or if pos is not between 0 and the target's arity, inclusive,
or if the resulting method handle's type would have
too many parameters |
constant
public static MethodHandle constant (Class<?> type, Object value)
Produces a method handle of the requested return type which returns the given constant value every time it is invoked.
Before the method handle is returned, the passed-in value is converted to the requested type. If the requested type is primitive, widening primitive conversions are attempted, else reference conversions are attempted.
The returned method handle is equivalent to identity(type).bindTo(value)
.
Parameters | |
---|---|
type |
Class : the return type of the desired method handle |
value |
Object : the value to return |
Returns | |
---|---|
MethodHandle |
a method handle of the given return type and no arguments, which always returns the given value |
Throws | |
---|---|
NullPointerException |
if the type argument is null |
ClassCastException |
if the value cannot be converted to the required return type |
IllegalArgumentException |
if the given type is void.class |
countedLoop
public static MethodHandle countedLoop (MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body)
Constructs a loop that counts over a range of numbers. This is a convenience wrapper for the generic loop combinator.
The loop counter i
is a loop iteration variable of type int
.
The start
and end
handles determine the start (inclusive) and end (exclusive)
values of the loop counter.
The loop counter will be initialized to the int
value returned from the evaluation of the
start
handle and run to the value returned from end
(exclusively) with a step width of 1.
If the body
handle returns a non-void
type V
, a leading loop iteration variable
of that type is also present. This variable is initialized using the optional init
handle,
or to the default value of type V
if that handle is null
.
In each iteration, the iteration variables are passed to an invocation of the body
handle.
A non-void
value returned from the body (of type V
) updates the leading
iteration variable.
The result of the loop handle execution will be the final V
value of that variable
(or void
if there is no V
variable).
The following rules hold for the argument handles:
- The
start
andend
handles must not benull
, and must both return the common typeint
, referred to here asI
in parameter type lists. - The
body
handle must not benull
; its type must be of the form(V I A...)V
, whereV
is non-void
, or else(I A...)void
. (In thevoid
case, we assign the typevoid
to the nameV
, and we will write(V I A...)V
with the understanding that avoid
typeV
is quietly dropped from the parameter list, leaving(I A...)V
.) - The parameter list
(V I A...)
of the body contributes to a list of types called the internal parameter list. It will constrain the parameter lists of the other loop parts. - As a special case, if the body contributes only
V
andI
types, with no additionalA
types, then the internal parameter list is extended by the argument typesA...
of theend
handle. - If the iteration variable types
(V I)
are dropped from the internal parameter list, the resulting shorter list(A...)
is called the external parameter list. - The body return type
V
, if non-void
, determines the type of an additional state variable of the loop. The body must both accept a leading parameter and return a value of this typeV
. - If
init
is non-null
, it must have return typeV
. Its parameter list (of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - If
init
isnull
, the loop variable will be initialized to its default value. - The parameter list of
start
(of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - Likewise, the parameter list of
end
must be effectively identical to the external parameter list.
The resulting loop handle's result type and parameter signature are determined as follows:
- The loop handle's result type is the result type
V
of the body. - The loop handle's parameter types are the types
(A...)
, from the external parameter list.
Here is pseudocode for the resulting loop handle. In the code, V
/v
represent the type / value of
the second loop variable as well as the result type of the loop; and A...
/a...
represent
arguments passed to the loop.
int start(A...); int end(A...); V init(A...); V body(V, int, A...); V countedLoop(A... a...) { int e = end(a...); int s = start(a...); V v = init(a...); for (int i = s; i < e; ++i) { v = body(v, i, a...); } return v; }
API Note:
- The implementation of this method can be expressed as follows:
MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) { MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class); // assume MH_increment and MH_predicate are handles to implementation-internal methods with // the following semantics: // MH_increment: (int limit, int counter) -> counter + 1 // MH_predicate: (int limit, int counter) -> counter < limit Class<?> counterType = start.type().returnType(); // int Class<?> returnType = body.type().returnType(); MethodHandle incr = MH_increment, pred = MH_predicate, retv = null; if (returnType != void.class) { // ignore the V variable incr = dropArguments(incr, 1, returnType); // (limit, v, i) => (limit, i) pred = dropArguments(pred, 1, returnType); // ditto retv = dropArguments(identity(returnType), 0, counterType); // ignore limit } body = dropArguments(body, 0, counterType); // ignore the limit variable MethodHandle[] loopLimit = { end, null, pred, retv }, // limit = end(); i < limit || return v bodyClause = { init, body }, // v = init(); v = body(v, i) indexVar = { start, incr }; // i = start(); i = i + 1 return loop(loopLimit, bodyClause, indexVar); }
Parameters | |
---|---|
start |
MethodHandle : a non-null handle to return the start value of the loop counter, which must be int .
See above for other constraints. |
end |
MethodHandle : a non-null handle to return the end value of the loop counter (the loop will run to
end-1 ). The result type must be int . See above for other constraints. |
init |
MethodHandle : optional initializer, providing the initial value of the loop variable.
May be null , implying a default initial value. See above for other constraints. |
body |
MethodHandle : body of the loop, which may not be null .
It controls the loop parameters and result type in the standard case (see above for details).
It must accept its own return type (if non-void) plus an int parameter (for the counter),
and may accept any number of additional types.
See above for other constraints. |
Returns | |
---|---|
MethodHandle |
a method handle representing the loop. |
Throws | |
---|---|
NullPointerException |
if any of the start , end , or body handles is null . |
IllegalArgumentException |
if any argument violates the rules formulated above. |
countedLoop
public static MethodHandle countedLoop (MethodHandle iterations, MethodHandle init, MethodHandle body)
Constructs a loop that runs a given number of iterations. This is a convenience wrapper for the generic loop combinator.
The number of iterations is determined by the iterations
handle evaluation result.
The loop counter i
is an extra loop iteration variable of type int
.
It will be initialized to 0 and incremented by 1 in each iteration.
If the body
handle returns a non-void
type V
, a leading loop iteration variable
of that type is also present. This variable is initialized using the optional init
handle,
or to the default value of type V
if that handle is null
.
In each iteration, the iteration variables are passed to an invocation of the body
handle.
A non-void
value returned from the body (of type V
) updates the leading
iteration variable.
The result of the loop handle execution will be the final V
value of that variable
(or void
if there is no V
variable).
The following rules hold for the argument handles:
- The
iterations
handle must not benull
, and must return the typeint
, referred to here asI
in parameter type lists. - The
body
handle must not benull
; its type must be of the form(V I A...)V
, whereV
is non-void
, or else(I A...)void
. (In thevoid
case, we assign the typevoid
to the nameV
, and we will write(V I A...)V
with the understanding that avoid
typeV
is quietly dropped from the parameter list, leaving(I A...)V
.) - The parameter list
(V I A...)
of the body contributes to a list of types called the internal parameter list. It will constrain the parameter lists of the other loop parts. - As a special case, if the body contributes only
V
andI
types, with no additionalA
types, then the internal parameter list is extended by the argument typesA...
of theiterations
handle. - If the iteration variable types
(V I)
are dropped from the internal parameter list, the resulting shorter list(A...)
is called the external parameter list. - The body return type
V
, if non-void
, determines the type of an additional state variable of the loop. The body must both accept a leading parameter and return a value of this typeV
. - If
init
is non-null
, it must have return typeV
. Its parameter list (of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - If
init
isnull
, the loop variable will be initialized to its default value. - The parameter list of
iterations
(of some form(A*)
) must be effectively identical to the external parameter list(A...)
.
The resulting loop handle's result type and parameter signature are determined as follows:
- The loop handle's result type is the result type
V
of the body. - The loop handle's parameter types are the types
(A...)
, from the external parameter list.
Here is pseudocode for the resulting loop handle. In the code, V
/v
represent the type / value of
the second loop variable as well as the result type of the loop; and A...
/a...
represent
arguments passed to the loop.
int iterations(A...); V init(A...); V body(V, int, A...); V countedLoop(A... a...) { int end = iterations(a...); V v = init(a...); for (int i = 0; i < end; ++i) { v = body(v, i, a...); } return v; }
API Note:
- Example with a fully conformant body method:
// String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; // => a variation on a well known theme static String step(String v, int counter, String init) { return "na " + v; } // assume MH_step is a handle to the method above MethodHandle fit13 = MethodHandles.constant(int.class, 13); MethodHandle start = MethodHandles.identity(String.class); MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step); assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
API Note:
- Example with the simplest possible body method type,
and passing the number of iterations to the loop invocation:
// String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s; // => a variation on a well known theme static String step(String v, int counter ) { return "na " + v; } // assume MH_step is a handle to the method above MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class); MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class); MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i) -> "na " + v assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
API Note:
- Example that treats the number of iterations, string to append to, and string to append
as loop parameters:
// String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; // => a variation on a well known theme static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; } // assume MH_step is a handle to the method above MethodHandle count = MethodHandles.identity(int.class); MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class); MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step); // (v, i, _, pre, _) -> pre + " " + v assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
API Note:
- Example that illustrates the usage of
dropArgumentsToMatch(java.lang.invoke.MethodHandle, int, java.util.List, int)
to enforce a loop type:// String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s; // => a variation on a well known theme static String step(String v, int counter, String pre) { return pre + " " + v; } // assume MH_step is a handle to the method above MethodType loopType = methodType(String.class, String.class, int.class, String.class); MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class), 0, loopType.parameterList(), 1); MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2); MethodHandle body = MethodHandles.dropArgumentsToMatch(MH_step, 2, loopType.parameterList(), 0); MethodHandle loop = MethodHandles.countedLoop(count, start, body); // (v, i, pre, _, _) -> pre + " " + v assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
API Note:
- The implementation of this method can be expressed as follows:
MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) { return countedLoop(empty(iterations.type()), iterations, init, body); }
Parameters | |
---|---|
iterations |
MethodHandle : a non-null handle to return the number of iterations this loop should run. The handle's
result type must be int . See above for other constraints. |
init |
MethodHandle : optional initializer, providing the initial value of the loop variable.
May be null , implying a default initial value. See above for other constraints. |
body |
MethodHandle : body of the loop, which may not be null .
It controls the loop parameters and result type in the standard case (see above for details).
It must accept its own return type (if non-void) plus an int parameter (for the counter),
and may accept any number of additional types.
See above for other constraints. |
Returns | |
---|---|
MethodHandle |
a method handle representing the loop. |
Throws | |
---|---|
NullPointerException |
if either of the iterations or body handles is null . |
IllegalArgumentException |
if any argument violates the rules formulated above. |
doWhileLoop
public static MethodHandle doWhileLoop (MethodHandle init, MethodHandle body, MethodHandle pred)
Constructs a do-while
loop from an initializer, a body, and a predicate.
This is a convenience wrapper for the generic loop combinator.
The pred
handle describes the loop condition; and body
, its body. The loop resulting from this
method will, in each iteration, first execute its body and then evaluate the predicate.
The loop will terminate once the predicate evaluates to false
after an execution of the body.
The init
handle describes the initial value of an additional optional loop-local variable.
In each iteration, this loop-local variable, if present, will be passed to the body
and updated with the value returned from its invocation. The result of loop execution will be
the final value of the additional loop-local variable (if present).
The following rules hold for these argument handles:
- The
body
handle must not benull
; its type must be of the form(V A...)V
, whereV
is non-void
, or else(A...)void
. (In thevoid
case, we assign the typevoid
to the nameV
, and we will write(V A...)V
with the understanding that avoid
typeV
is quietly dropped from the parameter list, leaving(A...)V
.) - The parameter list
(V A...)
of the body is called the internal parameter list. It will constrain the parameter lists of the other loop parts. - If the iteration variable type
V
is dropped from the internal parameter list, the resulting shorter list(A...)
is called the external parameter list. - The body return type
V
, if non-void
, determines the type of an additional state variable of the loop. The body must both accept and return a value of this typeV
. - If
init
is non-null
, it must have return typeV
. Its parameter list (of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - If
init
isnull
, the loop variable will be initialized to its default value. - The
pred
handle must not benull
. It must haveboolean
as its return type. Its parameter list (either empty or of the form(V A*)
) must be effectively identical to the internal parameter list.
The resulting loop handle's result type and parameter signature are determined as follows:
- The loop handle's result type is the result type
V
of the body. - The loop handle's parameter types are the types
(A...)
, from the external parameter list.
Here is pseudocode for the resulting loop handle. In the code, V
/v
represent the type / value of
the sole loop variable as well as the result type of the loop; and A
/a
, that of the argument
passed to the loop.
V init(A...); boolean pred(V, A...); V body(V, A...); V doWhileLoop(A... a...) { V v = init(a...); do { v = body(v, a...); } while (pred(v, a...)); return v; }
API Note:
- Example:
// int i = 0; while (i < limit) { ++i; } return i; => limit static int zero(int limit) { return 0; } static int step(int i, int limit) { return i + 1; } static boolean pred(int i, int limit) { return i < limit; } // assume MH_zero, MH_step, and MH_pred are handles to the above methods MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred); assertEquals(23, loop.invoke(23));
API Note:
- The implementation of this method can be expressed as follows:
MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) { MethodHandle fini = (body.type().returnType() == void.class ? null : identity(body.type().returnType())); MethodHandle[] clause = { init, body, pred, fini }; return loop(clause); }
Parameters | |
---|---|
init |
MethodHandle : optional initializer, providing the initial value of the loop variable.
May be null , implying a default initial value. See above for other constraints. |
body |
MethodHandle : body of the loop, which may not be null . It controls the loop parameters and result type.
See above for other constraints. |
pred |
MethodHandle : condition for the loop, which may not be null . Its result type must be boolean . See
above for other constraints. |
Returns | |
---|---|
MethodHandle |
a method handle implementing the while loop as described by the arguments. |
Throws | |
---|---|
IllegalArgumentException |
if the rules for the arguments are violated. |
NullPointerException |
if pred or body are null . |
dropArguments
public static MethodHandle dropArguments (MethodHandle target, int pos, List<Class<?>> valueTypes)
Produces a method handle which will discard some placeholder arguments before calling some other specified target method handle. The type of the new method handle will be the same as the target's type, except it will also include the placeholder argument types, at some given position.
The pos
argument may range between zero and N,
where N is the arity of the target.
If pos
is zero, the placeholder arguments will precede
the target's real arguments; if pos
is N
they will come after.
Example:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle cat = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); assertEquals("xy", (String) cat.invokeExact("x", "y")); MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class); MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2)); assertEquals(bigType, d0.type()); assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
This method is also equivalent to the following code:
dropArguments
(target, pos, valueTypes.toArray(new Class[0]))
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after the arguments are dropped |
pos |
int : position of first argument to drop (zero for the leftmost) |
valueTypes |
List : the type(s) of the argument(s) to drop |
Returns | |
---|---|
MethodHandle |
a method handle which drops arguments of the given types, before calling the original method handle |
Throws | |
---|---|
NullPointerException |
if the target is null,
or if the valueTypes list or any of its elements is null |
IllegalArgumentException |
if any element of valueTypes is void.class ,
or if pos is negative or greater than the arity of the target,
or if the new method handle's type would have too many parameters |
dropArguments
public static MethodHandle dropArguments (MethodHandle target, int pos, Class...<?> valueTypes)
Produces a method handle which will discard some placeholder arguments before calling some other specified target method handle. The type of the new method handle will be the same as the target's type, except it will also include the placeholder argument types, at some given position.
The pos
argument may range between zero and N,
where N is the arity of the target.
If pos
is zero, the placeholder arguments will precede
the target's real arguments; if pos
is N
they will come after.
API Note:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle cat = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); assertEquals("xy", (String) cat.invokeExact("x", "y")); MethodHandle d0 = dropArguments(cat, 0, String.class); assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); MethodHandle d1 = dropArguments(cat, 1, String.class); assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); MethodHandle d2 = dropArguments(cat, 2, String.class); assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
This method is also equivalent to the following code:
dropArguments
(target, pos, Arrays.asList(valueTypes))
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after the arguments are dropped |
pos |
int : position of first argument to drop (zero for the leftmost) |
valueTypes |
Class : the type(s) of the argument(s) to drop |
Returns | |
---|---|
MethodHandle |
a method handle which drops arguments of the given types, before calling the original method handle |
Throws | |
---|---|
NullPointerException |
if the target is null,
or if the valueTypes array or any of its elements is null |
IllegalArgumentException |
if any element of valueTypes is void.class ,
or if pos is negative or greater than the arity of the target,
or if the new method handle's type would have
too many parameters |
dropArgumentsToMatch
public static MethodHandle dropArgumentsToMatch (MethodHandle target, int skip, List<Class<?>> newTypes, int pos)
Adapts a target method handle to match the given parameter type list. If necessary, adds placeholder arguments. Some
leading parameters can be skipped before matching begins. The remaining types in the target
's parameter
type list must be a sub-list of the newTypes
type list at the starting position pos
. The
resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
dropArguments(java.lang.invoke.MethodHandle, int, java.lang.Class[])
.
The resulting handle will have the same return type as the target handle.
In more formal terms, assume these two type lists:
- The target handle has the parameter type list
S..., M...
, with as many types inS
as indicated byskip
. TheM
types are those that are supposed to match part of the given type list,newTypes
. - The
newTypes
list contains typesP..., M..., A...
, with as many types inP
as indicated bypos
. TheM
types are precisely those that theM
types in the target handle's parameter type list are supposed to match. The types inA
are additional types found after the matching sub-list.
dropArgumentsToMatch
will have the parameter type
list S..., P..., M..., A...
, with the P
and A
types inserted as if by
dropArguments(java.lang.invoke.MethodHandle, int, java.lang.Class[])
.
API Note:
- Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
mutually converted to a common type by two calls to
dropArgumentsToMatch
, as follows:import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... ... MethodHandle h0 = constant(boolean.class, true); MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class); MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList()); if (h1.type().parameterCount() < h2.type().parameterCount()) h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0); // lengthen h1 else h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0); // lengthen h2 MethodHandle h3 = guardWithTest(h0, h1, h2); assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
Parameters | |
---|---|
target |
MethodHandle : the method handle to adapt |
skip |
int : number of targets parameters to disregard (they will be unchanged) |
newTypes |
List : the list of types to match target 's parameter type list to |
pos |
int : place in newTypes where the non-skipped target parameters must occur |
Returns | |
---|---|
MethodHandle |
a possibly adapted method handle |
Throws | |
---|---|
NullPointerException |
if either argument is null |
IllegalArgumentException |
if any element of newTypes is void.class ,
or if skip is negative or greater than the arity of the target,
or if pos is negative or greater than the newTypes list size,
or if newTypes does not contain the target 's non-skipped parameter types at position
pos . |
dropReturn
public static MethodHandle dropReturn (MethodHandle target)
Drop the return value of the target handle (if any).
The returned method handle will have a void
return type.
Parameters | |
---|---|
target |
MethodHandle : the method handle to adapt |
Returns | |
---|---|
MethodHandle |
a possibly adapted method handle |
Throws | |
---|---|
NullPointerException |
if target is null |
empty
public static MethodHandle empty (MethodType type)
Produces a method handle of the requested type which ignores any arguments, does nothing,
and returns a suitable default depending on the return type.
That is, it returns a zero primitive value, a null
, or void
.
The returned method handle is equivalent to
dropArguments(zero(type.returnType()), 0, type.parameterList())
.
API Note:
- Given a predicate and target, a useful "if-then" construct can be produced as
guardWithTest(pred, target, empty(target.type())
.
Parameters | |
---|---|
type |
MethodType : the type of the desired method handle |
Returns | |
---|---|
MethodHandle |
a constant method handle of the given type, which returns a default value of the given return type |
Throws | |
---|---|
NullPointerException |
if the argument is null |
See also:
exactInvoker
public static MethodHandle exactInvoker (MethodType type)
Produces a special invoker method handle which can be used to
invoke any method handle of the given type, as if by invokeExact
.
The resulting invoker will have a type which is
exactly equal to the desired type, except that it will accept
an additional leading argument of type MethodHandle
.
This method is equivalent to the following code (though it may be more efficient):
publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)
Discussion:
Invoker method handles can be useful when working with variable method handles
of unknown types.
For example, to emulate an invokeExact
call to a variable method
handle M
, extract its type T
,
look up the invoker method X
for T
,
and call the invoker method, as X.invoke(T, A...)
.
(It would not work to call X.invokeExact
, since the type T
is unknown.)
If spreading, collecting, or other argument transformations are required,
they can be applied once to the invoker X
and reused on many M
method handle values, as long as they are compatible with the type of X
.
(Note: The invoker method is not available via the Core Reflection API.
An attempt to call java.lang.reflect.Method.invoke
on the declared invokeExact
or invoke
method will raise an
UnsupportedOperationException
.)
This method throws no reflective or security exceptions.
Parameters | |
---|---|
type |
MethodType : the desired target type |
Returns | |
---|---|
MethodHandle |
a method handle suitable for invoking any method handle of the given type |
Throws | |
---|---|
IllegalArgumentException |
if the resulting method handle's type would have too many parameters |
explicitCastArguments
public static MethodHandle explicitCastArguments (MethodHandle target, MethodType newType)
Produces a method handle which adapts the type of the given method handle to a new type by pairwise argument and return type conversion. The original type and new type must have the same number of arguments. The resulting method handle is guaranteed to report a type which is equal to the desired new type.
If the original type and new type are equal, returns target.
The same conversions are allowed as for MethodHandle.asType
,
and some additional conversions are also applied if those conversions fail.
Given types T0, T1, one of the following conversions is applied
if possible, before or instead of any conversions done by asType
:
- If T0 and T1 are references, and T1 is an interface type, then the value of type T0 is passed as a T1 without a cast. (This treatment of interfaces follows the usage of the bytecode verifier.)
- If T0 is boolean and T1 is another primitive, the boolean is converted to a byte value, 1 for true, 0 for false. (This treatment follows the usage of the bytecode verifier.)
- If T1 is boolean and T0 is another primitive,
T0 is converted to byte via Java casting conversion (JLS 5.5),
and the low order bit of the result is tested, as if by
(x & 1) != 0
. - If T0 and T1 are primitives other than boolean, then a Java casting conversion (JLS 5.5) is applied. (Specifically, T0 will convert to T1 by widening and/or narrowing.)
- If T0 is a reference and T1 a primitive, an unboxing conversion will be applied at runtime, possibly followed by a Java casting conversion (JLS 5.5) on the primitive value, possibly followed by a conversion from byte to boolean by testing the low-order bit.
- If T0 is a reference and T1 a primitive, and if the reference is null at runtime, a zero value is introduced.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after arguments are retyped |
newType |
MethodType : the expected type of the new method handle |
Returns | |
---|---|
MethodHandle |
a method handle which delegates to the target after performing any necessary argument conversions, and arranges for any necessary return value conversions |
Throws | |
---|---|
NullPointerException |
if either argument is null |
WrongMethodTypeException |
if the conversion cannot be made |
See also:
filterArguments
public static MethodHandle filterArguments (MethodHandle target, int pos, MethodHandle... filters)
Adapts a target method handle by pre-processing one or more of its arguments, each with its own unary filter function, and then calling the target with each pre-processed argument replaced by the result of its corresponding filter function.
The pre-processing is performed by one or more method handles,
specified in the elements of the filters
array.
The first element of the filter array corresponds to the pos
argument of the target, and so on in sequence.
The filter functions are invoked in left to right order.
Null arguments in the array are treated as identity functions, and the corresponding arguments left unchanged. (If there are no non-null elements in the array, the original target is returned.) Each filter is applied to the corresponding argument of the adapter.
If a filter F
applies to the N
th argument of
the target, then F
must be a method handle which
takes exactly one argument. The type of F
's sole argument
replaces the corresponding argument type of the target
in the resulting adapted method handle.
The return type of F
must be identical to the corresponding
parameter type of the target.
It is an error if there are elements of filters
(null or not)
which do not correspond to argument positions in the target.
Example:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle cat = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); MethodHandle upcase = lookup().findVirtual(String.class, "toUpperCase", methodType(String.class)); assertEquals("xy", (String) cat.invokeExact("x", "y")); MethodHandle f0 = filterArguments(cat, 0, upcase); assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy MethodHandle f1 = filterArguments(cat, 1, upcase); assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
Here is pseudocode for the resulting adapter. In the code, T
denotes the return type of both the target
and resulting adapter.
P
/p
and B
/b
represent the types and values
of the parameters and arguments that precede and follow the filter position
pos
, respectively. A[i]
/a[i]
stand for the types and
values of the filtered parameters and arguments; they also represent the
return types of the filter[i]
handles. The latter accept arguments
v[i]
of type V[i]
, which also appear in the signature of
the resulting adapter.
T target(P... p, A[i]... a[i], B... b); A[i] filter[i](V[i]); T adapter(P... p, V[i]... v[i], B... b) { return target(p..., filter[i](v[i])..., b...); }
Note: The resulting adapter is never a variable-arity method handle, even if the original target method handle was.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after arguments are filtered |
pos |
int : the position of the first argument to filter |
filters |
MethodHandle : method handles to call initially on filtered arguments |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified argument filtering logic |
Throws | |
---|---|
NullPointerException |
if the target is null
or if the filters array is null |
IllegalArgumentException |
if a non-null element of filters
does not match a corresponding argument type of target as described above,
or if the pos+filters.length is greater than target.type().parameterCount() ,
or if the resulting method handle's type would have
too many parameters |
filterReturnValue
public static MethodHandle filterReturnValue (MethodHandle target, MethodHandle filter)
Adapts a target method handle by post-processing its return value (if any) with a filter (another method handle). The result of the filter is returned from the adapter.
If the target returns a value, the filter must accept that value as its only argument. If the target returns void, the filter must accept no arguments.
The return type of the filter replaces the return type of the target in the resulting adapted method handle. The argument type of the filter (if any) must be identical to the return type of the target.
Example:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle cat = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); MethodHandle length = lookup().findVirtual(String.class, "length", methodType(int.class)); System.out.println((String) cat.invokeExact("x", "y")); // xy MethodHandle f0 = filterReturnValue(cat, length); System.out.println((int) f0.invokeExact("x", "y")); // 2
Here is pseudocode for the resulting adapter. In the code,
T
/t
represent the result type and value of the
target
; V
, the result type of the filter
; and
A
/a
, the types and values of the parameters and arguments
of the target
as well as the resulting adapter.
T target(A...); V filter(T); V adapter(A... a) { T t = target(a...); return filter(t); } // and if the target has a void return: void target2(A...); V filter2(); V adapter2(A... a) { target2(a...); return filter2(); } // and if the filter has a void return: T target3(A...); void filter3(V); void adapter3(A... a) { T t = target3(a...); filter3(t); }
Note: The resulting adapter is never a variable-arity method handle, even if the original target method handle was.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke before filtering the return value |
filter |
MethodHandle : method handle to call on the return value |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified return value filtering logic |
Throws | |
---|---|
NullPointerException |
if either argument is null |
IllegalArgumentException |
if the argument list of filter
does not match the return type of target as described above |
foldArguments
public static MethodHandle foldArguments (MethodHandle target, MethodHandle combiner)
Adapts a target method handle by pre-processing some of its arguments, and then calling the target with the result of the pre-processing, inserted into the original sequence of arguments.
The pre-processing is performed by combiner
, a second method handle.
Of the arguments passed to the adapter, the first N
arguments
are copied to the combiner, which is then called.
(Here, N
is defined as the parameter count of the combiner.)
After this, control passes to the target, with any result
from the combiner inserted before the original N
incoming
arguments.
If the combiner returns a value, the first parameter type of the target
must be identical with the return type of the combiner, and the next
N
parameter types of the target must exactly match the parameters
of the combiner.
If the combiner has a void return, no result will be inserted,
and the first N
parameter types of the target
must exactly match the parameters of the combiner.
The resulting adapter is the same type as the target, except that the first parameter type is dropped, if it corresponds to the result of the combiner.
(Note that dropArguments
can be used to remove any arguments
that either the combiner or the target does not wish to receive.
If some of the incoming arguments are destined only for the combiner,
consider using asCollector
instead, since those
arguments will not need to be live on the stack on entry to the
target.)
Example:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, "println", methodType(void.class, String.class)) .bindTo(System.out); MethodHandle cat = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); MethodHandle catTrace = foldArguments(cat, trace); // also prints "boo": assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
Here is pseudocode for the resulting adapter. In the code, T
represents the result type of the target
and resulting adapter.
V
/v
represent the type and value of the parameter and argument
of target
that precedes the folding position; V
also is
the result type of the combiner
. A
/a
denote the
types and values of the N
parameters and arguments at the folding
position. B
/b
represent the types and values of the
target
parameters and arguments that follow the folded parameters
and arguments.
// there are N arguments in A... T target(V, A[N]..., B...); V combiner(A...); T adapter(A... a, B... b) { V v = combiner(a...); return target(v, a..., b...); } // and if the combiner has a void return: T target2(A[N]..., B...); void combiner2(A...); T adapter2(A... a, B... b) { combiner2(a...); return target2(a..., b...); }
Note: The resulting adapter is never a variable-arity method handle, even if the original target method handle was.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after arguments are combined |
combiner |
MethodHandle : method handle to call initially on the incoming arguments |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified argument folding logic |
Throws | |
---|---|
NullPointerException |
if either argument is null |
IllegalArgumentException |
if combiner 's return type
is non-void and not the same as the first argument type of
the target, or if the initial N argument types
of the target
(skipping one matching the combiner 's return type)
are not identical with the argument types of combiner |
foldArguments
public static MethodHandle foldArguments (MethodHandle target, int pos, MethodHandle combiner)
Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then calling the target with the result of the pre-processing, inserted into the original sequence of arguments just before the folded arguments.
This method is closely related to foldArguments(java.lang.invoke.MethodHandle, java.lang.invoke.MethodHandle)
, but allows to control the
position in the parameter list at which folding takes place. The argument controlling this, pos
, is a
zero-based index. The aforementioned method foldArguments(java.lang.invoke.MethodHandle, java.lang.invoke.MethodHandle)
assumes position
0.
API Note:
- Example:
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class, "println", methodType(void.class, String.class)) .bindTo(System.out); MethodHandle cat = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class)); assertEquals("boojum", (String) cat.invokeExact("boo", "jum")); MethodHandle catTrace = foldArguments(cat, 1, trace); // also prints "jum": assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
Here is pseudocode for the resulting adapter. In the code,
T
represents the result type of thetarget
and resulting adapter.V
/v
represent the type and value of the parameter and argument oftarget
that precedes the folding position;V
also is the result type of thecombiner
.A
/a
denote the types and values of theN
parameters and arguments at the folding position.Z
/z
andB
/b
represent the types and values of thetarget
parameters and arguments that precede and follow the folded parameters and arguments starting atpos
, respectively.// there are N arguments in A... T target(Z..., V, A[N]..., B...); V combiner(A...); T adapter(Z... z, A... a, B... b) { V v = combiner(a...); return target(z..., v, a..., b...); } // and if the combiner has a void return: T target2(Z..., A[N]..., B...); void combiner2(A...); T adapter2(Z... z, A... a, B... b) { combiner2(a...); return target2(z..., a..., b...); }
Note: The resulting adapter is never a variable-arity method handle, even if the original target method handle was.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after arguments are combined |
pos |
int : the position at which to start folding and at which to insert the folding result; if this is 0 , the effect is the same as for foldArguments(java.lang.invoke.MethodHandle, java.lang.invoke.MethodHandle) . |
combiner |
MethodHandle : method handle to call initially on the incoming arguments |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified argument folding logic |
Throws | |
---|---|
NullPointerException |
if either argument is null |
IllegalArgumentException |
if either of the following two conditions holds:
(1) combiner 's return type is non-void and not the same as the argument type at position
pos of the target signature;
(2) the N argument types at position pos of the target signature (skipping one matching
the combiner 's return type) are not identical with the argument types of combiner . |
guardWithTest
public static MethodHandle guardWithTest (MethodHandle test, MethodHandle target, MethodHandle fallback)
Makes a method handle which adapts a target method handle, by guarding it with a test, a boolean-valued method handle. If the guard fails, a fallback handle is called instead. All three method handles must have the same corresponding argument and return types, except that the return type of the test must be boolean, and the test is allowed to have fewer arguments than the other two method handles.
Here is pseudocode for the resulting adapter:
Note that the test arguments (boolean test(A...); T target(A...,B...); T fallback(A...,B...); T adapter(A... a,B... b) { if (test(a...)) return target(a..., b...); else return fallback(a..., b...); }
a...
in the pseudocode) cannot
be modified by execution of the test, and so are passed unchanged
from the caller to the target or fallback as appropriate.
Parameters | |
---|---|
test |
MethodHandle : method handle used for test, must return boolean |
target |
MethodHandle : method handle to call if test passes |
fallback |
MethodHandle : method handle to call if test fails |
Returns | |
---|---|
MethodHandle |
method handle which incorporates the specified if/then/else logic |
Throws | |
---|---|
NullPointerException |
if any argument is null |
IllegalArgumentException |
if test does not return boolean,
or if all three method types do not match (with the return
type of test changed to match that of the target). |
identity
public static MethodHandle identity (Class<?> type)
Produces a method handle which returns its sole argument when invoked.
Parameters | |
---|---|
type |
Class : the type of the sole parameter and return value of the desired method handle |
Returns | |
---|---|
MethodHandle |
a unary method handle which accepts and returns the given type |
Throws | |
---|---|
NullPointerException |
if the argument is null |
IllegalArgumentException |
if the given type is void.class |
insertArguments
public static MethodHandle insertArguments (MethodHandle target, int pos, Object... values)
Provides a target method handle with one or more bound arguments in advance of the method handle's invocation. The formal parameters to the target corresponding to the bound arguments are called bound parameters. Returns a new method handle which saves away the bound arguments. When it is invoked, it receives arguments for any non-bound parameters, binds the saved arguments to their corresponding parameters, and calls the original target.
The type of the new method handle will drop the types for the bound parameters from the original target type, since the new method handle will no longer require those arguments to be supplied by its callers.
Each given argument object must match the corresponding bound parameter type. If a bound parameter type is a primitive, the argument object must be a wrapper, and will be unboxed to produce the primitive value.
The pos
argument selects which parameters are to be bound.
It may range between zero and N-L (inclusively),
where N is the arity of the target method handle
and L is the length of the values array.
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after the argument is inserted |
pos |
int : where to insert the argument (zero for the first) |
values |
Object : the series of arguments to insert |
Returns | |
---|---|
MethodHandle |
a method handle which inserts an additional argument, before calling the original method handle |
Throws | |
---|---|
NullPointerException |
if the target or the values array is null |
See also:
invoker
public static MethodHandle invoker (MethodType type)
Produces a special invoker method handle which can be used to
invoke any method handle compatible with the given type, as if by invoke
.
The resulting invoker will have a type which is
exactly equal to the desired type, except that it will accept
an additional leading argument of type MethodHandle
.
Before invoking its target, if the target differs from the expected type,
the invoker will apply reference casts as
necessary and box, unbox, or widen primitive values, as if by asType
.
Similarly, the return value will be converted as necessary.
If the target is a variable arity method handle,
the required arity conversion will be made, again as if by asType
.
This method is equivalent to the following code (though it may be more efficient):
publicLookup().findVirtual(MethodHandle.class, "invoke", type)
Discussion:
A general method type is one which
mentions only Object
arguments and return values.
An invoker for such a type is capable of calling any method handle
of the same arity as the general type.
(Note: The invoker method is not available via the Core Reflection API.
An attempt to call java.lang.reflect.Method.invoke
on the declared invokeExact
or invoke
method will raise an
UnsupportedOperationException
.)
This method throws no reflective or security exceptions.
Parameters | |
---|---|
type |
MethodType : the desired target type |
Returns | |
---|---|
MethodHandle |
a method handle suitable for invoking any method handle convertible to the given type |
Throws | |
---|---|
IllegalArgumentException |
if the resulting method handle's type would have too many parameters |
iteratedLoop
public static MethodHandle iteratedLoop (MethodHandle iterator, MethodHandle init, MethodHandle body)
Constructs a loop that ranges over the values produced by an Iterator<T>
.
This is a convenience wrapper for the generic loop combinator.
The iterator itself will be determined by the evaluation of the iterator
handle.
Each value it produces will be stored in a loop iteration variable of type T
.
If the body
handle returns a non-void
type V
, a leading loop iteration variable
of that type is also present. This variable is initialized using the optional init
handle,
or to the default value of type V
if that handle is null
.
In each iteration, the iteration variables are passed to an invocation of the body
handle.
A non-void
value returned from the body (of type V
) updates the leading
iteration variable.
The result of the loop handle execution will be the final V
value of that variable
(or void
if there is no V
variable).
The following rules hold for the argument handles:
- The
body
handle must not benull
; its type must be of the form(V T A...)V
, whereV
is non-void
, or else(T A...)void
. (In thevoid
case, we assign the typevoid
to the nameV
, and we will write(V T A...)V
with the understanding that avoid
typeV
is quietly dropped from the parameter list, leaving(T A...)V
.) - The parameter list
(V T A...)
of the body contributes to a list of types called the internal parameter list. It will constrain the parameter lists of the other loop parts. - As a special case, if the body contributes only
V
andT
types, with no additionalA
types, then the internal parameter list is extended by the argument typesA...
of theiterator
handle; if it isnull
the single typeIterable
is added and constitutes theA...
list. - If the iteration variable types
(V T)
are dropped from the internal parameter list, the resulting shorter list(A...)
is called the external parameter list. - The body return type
V
, if non-void
, determines the type of an additional state variable of the loop. The body must both accept a leading parameter and return a value of this typeV
. - If
init
is non-null
, it must have return typeV
. Its parameter list (of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - If
init
isnull
, the loop variable will be initialized to its default value. - If the
iterator
handle is non-null
, it must have the return typejava.util.Iterator
or a subtype thereof. The iterator it produces when the loop is executed will be assumed to yield values which can be converted to typeT
. - The parameter list of an
iterator
that is non-null
(of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - If
iterator
isnull
it defaults to a method handle which behaves likeIterable.iterator()
. In that case, the internal parameter list(V T A...)
must have at least oneA
type, and the default iterator handle parameter is adjusted to accept the leadingA
type, as if by theasType
conversion method. The leadingA
type must beIterable
or a subtype thereof. This conversion step, done at loop construction time, must not throw aWrongMethodTypeException
.
The type T
may be either a primitive or reference.
Since type Iterator<T>
is erased in the method handle representation to the raw type Iterator
,
the iteratedLoop
combinator adjusts the leading argument type for body
to Object
as if by the asType
conversion method.
Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
as the result of dynamic conversions performed by MethodHandle.asType(MethodType)
.
The resulting loop handle's result type and parameter signature are determined as follows:
- The loop handle's result type is the result type
V
of the body. - The loop handle's parameter types are the types
(A...)
, from the external parameter list.
Here is pseudocode for the resulting loop handle. In the code, V
/v
represent the type / value of
the loop variable as well as the result type of the loop; T
/t
, that of the elements of the
structure the loop iterates over, and A...
/a...
represent arguments passed to the loop.
Iterator<T> iterator(A...); // defaults to Iterable::iterator V init(A...); V body(V,T,A...); V iteratedLoop(A... a...) { Iterator<T> it = iterator(a...); V v = init(a...); while (it.hasNext()) { T t = it.next(); v = body(v, t, a...); } return v; }
API Note:
- Example:
// get an iterator from a list static List<String> reverseStep(List<String> r, String e) { r.add(0, e); return r; } static List<String> newArrayList() { return new ArrayList<>(); } // assume MH_reverseStep and MH_newArrayList are handles to the above methods MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep); List<String> list = Arrays.asList("a", "b", "c", "d", "e"); List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a"); assertEquals(reversedList, (List<String>) loop.invoke(list));
API Note:
- The implementation of this method can be expressed approximately as follows:
MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) { // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable Class<?> returnType = body.type().returnType(); Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1); MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype)); MethodHandle retv = null, step = body, startIter = iterator; if (returnType != void.class) { // the simple thing first: in (I V A...), drop the I to get V retv = dropArguments(identity(returnType), 0, Iterator.class); // body type signature (V T A...), internal loop types (I V A...) step = swapArguments(body, 0, 1); // swap V <-> T } if (startIter == null) startIter = MH_getIter; MethodHandle[] iterVar = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext()) bodyClause = { init, filterArguments(step, 0, nextVal) }; // v = body(v, t, a) return loop(iterVar, bodyClause); }
Parameters | |
---|---|
iterator |
MethodHandle : an optional handle to return the iterator to start the loop.
If non-null , the handle must return Iterator or a subtype.
See above for other constraints. |
init |
MethodHandle : optional initializer, providing the initial value of the loop variable.
May be null , implying a default initial value. See above for other constraints. |
body |
MethodHandle : body of the loop, which may not be null .
It controls the loop parameters and result type in the standard case (see above for details).
It must accept its own return type (if non-void) plus a T parameter (for the iterated values),
and may accept any number of additional types.
See above for other constraints. |
Returns | |
---|---|
MethodHandle |
a method handle embodying the iteration loop functionality. |
Throws | |
---|---|
NullPointerException |
if the body handle is null . |
IllegalArgumentException |
if any argument violates the above requirements. |
lookup
public static MethodHandles.Lookup lookup ()
Returns a lookup object
with
full capabilities to emulate all supported bytecode behaviors of the caller.
These capabilities include private access to the caller.
Factory methods on the lookup object can create
direct method handles
for any member that the caller has access to via bytecodes,
including protected and private fields and methods.
This lookup object is a capability which may be delegated to trusted agents.
Do not store it in place where untrusted code can access it.
This method is caller sensitive, which means that it may return different values to different callers.
For any given caller class C
, the lookup object returned by this call
has equivalent capabilities to any lookup object
supplied by the JVM to the bootstrap method of an
invokedynamic instruction
executing in the same caller class C
.
Returns | |
---|---|
MethodHandles.Lookup |
a lookup object for the caller of this method, with private access |
loop
public static MethodHandle loop (MethodHandle... clauses)
Constructs a method handle representing a loop with several loop variables that are updated and checked upon each iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and delivers the loop's result, which is the return value of the resulting handle.
Intuitively, every loop is formed by one or more "clauses", each specifying a local iteration variable and/or a loop exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in terms of method handles, each clause will specify up to four independent actions:
- init: Before the loop executes, the initialization of an iteration variable
v
of typeV
. - step: When a clause executes, an update step for the iteration variable
v
. - pred: When a clause executes, a predicate execution to test for loop exit.
- fini: If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
(V...)
.
The values themselves will be (v...)
. When we speak of "parameter lists", we will usually
be referring to types, but in some contexts (describing execution) the lists will be of actual values.
Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in this case. See below for a detailed description.
Parameters optional everywhere:
Each clause function is allowed but not required to accept a parameter for each iteration variable v
.
As an exception, the init functions cannot take any v
parameters,
because those values are not yet computed when the init functions are executed.
Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
In fact, any clause function may take no arguments at all.
Loop parameters:
A clause function may take all the iteration variable values it is entitled to, in which case
it may also take more trailing parameters. Such extra values are called loop parameters,
with their types and values notated as (A...)
and (a...)
.
These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
(Since init functions do not accept iteration variables v
, any parameter to an
init function is automatically a loop parameter a
.)
As with iteration variables, clause functions are allowed but not required to accept loop parameters.
These loop parameters act as loop-invariant values visible across the whole loop.
Parameters visible everywhere:
Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
list (v... a...)
of current iteration variable values and incoming loop parameters.
The init functions can observe initial pre-loop state, in the form (a...)
.
Most clause functions will not need all of this information, but they will be formally connected to it
as if by dropArguments(MethodHandle, int, Class)
.
More specifically, we shall use the notation (V*)
to express an arbitrary prefix of a full
sequence (V...)
(and likewise for (v*)
, (A*)
, (a*)
).
In that notation, the general form of an init function parameter list
is (A*)
, and the general form of a non-init function parameter list is (V*)
or (V... A*)
.
Checking clause structure:
Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
corresponds to a place where IllegalArgumentException
will be thrown if the required constraint is not
met by the inputs to the loop combinator.
Effectively identical sequences:
A parameter list A
is defined to be effectively identical to another parameter list B
if A
and B
are identical, or if A
is shorter and is identical with a proper prefix of B
.
When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
as a whole if the set contains a longest list, and all members of the set are effectively identical to
that longest list.
For example, any set of type sequences of the form (V*)
is effectively identical,
and the same is true if more sequences of the form (V... A*)
are added.
Step 0: Determine clause structure.
- The clause array (of type
MethodHandle[][]
) must be non-null
and contain at least one element. - The clause array may not contain
null
s or sub-arrays longer than four elements. - Clauses shorter than four elements are treated as if they were padded by
null
elements to length four. Padding takes place by appending elements to the array. - Clauses with all
null
s are disregarded. - Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
Step 1A: Determine iteration variable types (V...)
.
- The iteration variable type for each clause is determined using the clause's init and step return types.
- If both functions are omitted, there is no iteration variable for the corresponding clause (
void
is used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's iteration variable type. If both are given, the common return type (they must be identical) defines the clause's iteration variable type. - Form the list of return types (in clause order), omitting all occurrences of
void
. - This list of types is called the "iteration variable types" (
(V...)
).
Step 1B: Determine loop parameters (A...)
.
- Examine and collect init function parameter lists (which are of the form
(A*)
). - Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
(They must have the form
(V... A*)
; collect the(A*)
parts only.) - Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types. (These types will be checked in step 2, along with all the clause function types.)
- Omitted clause functions are ignored. (Equivalently, they are deemed to have empty parameter lists.)
- All of the collected parameter lists must be effectively identical.
- The longest parameter list (which is necessarily unique) is called the "external parameter list" (
(A...)
). - If there is no such parameter list, the external parameter list is taken to be the empty sequence.
- The combined list consisting of iteration variable types followed by the external parameter types is called the "internal parameter list".
Step 1C: Determine loop return type.
- Examine fini function return types, disregarding omitted fini functions.
- If there are no fini functions, the loop return type is
void
. - Otherwise, the common return type
R
of the fini functions (their return types must be identical) defines the loop return type.
Step 1D: Check other types.
- There must be at least one non-omitted pred function.
- Every non-omitted pred function must have a
boolean
return type.
Step 2: Determine parameter lists.
- The parameter list for the resulting loop handle will be the external parameter list
(A...)
. - The parameter list for init functions will be adjusted to the external parameter list. (Note that their parameter lists are already effectively identical to this list.)
- The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
effectively identical to the internal parameter list
(V... A...)
.
Step 3: Fill in omitted functions.
- If an init function is omitted, use a default value for the clause's iteration variable type.
- If a step function is omitted, use an identity function of the clause's iteration
variable type; insert dropped argument parameters before the identity function parameter for the non-
void
iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.) - If a pred function is omitted, use a constant
true
function. (This will keep the loop going, as far as this clause is concerned. Note that in such cases the corresponding fini function is unreachable.) - If a fini function is omitted, use a default value for the loop return type.
Step 4: Fill in missing parameter types.
- At this point, every init function parameter list is effectively identical to the external parameter list
(A...)
, but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list. - At this point, every non-init function parameter list is effectively identical to the internal parameter
list
(V... A...)
, but some lists may be shorter. For every non-init function with a short parameter list, pad out the end of the list. - Argument lists are padded out by dropping unused trailing arguments.
Final observations.
- After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
- All init functions have a common parameter type list
(A...)
, which the final loop handle will also have. - All fini functions have a common return type
R
, which the final loop handle will also have. - All non-init functions have a common parameter type list
(V... A...)
, of (non-void
) iteration variablesV
followed by loop parameters. - Each pair of init and step functions agrees in their return type
V
. - Each non-init function will be able to observe the current values
(v...)
of all iteration variables. - Every function will be able to observe the incoming values
(a...)
of all loop parameters.
Example. As a consequence of step 1A above, the loop
combinator has the following property:
- Given
N
clausesCn = {null, Sn, Pn}
withn = 1..N
. - Suppose predicate handles
Pn
are eithernull
or have no parameters. (Only onePn
has to be non-null
.) - Suppose step handles
Sn
have signatures(B1..BX)Rn
, for some constantX>=N
. - Suppose
Q
is the count of non-void typesRn
, and(V1...VQ)
is the sequence of those types. - It must be that
Vn == Bn
forn = 1..min(X,Q)
. - The parameter types
Vn
will be interpreted as loop-local state elements(V...)
. - Any remaining types
BQ+1..BX
(ifQ<X
) will determine the resulting loop handle's parameter types(A...)
.
(A...)
were derived from the step functions,
which is natural if most of the loop computation happens in the steps. For some loops,
the burden of computation might be heaviest in the pred functions, and so the pred functions
might need to accept the loop parameter values. For loops with complex exit logic, the fini
functions might need to accept loop parameters, and likewise for loops with complex entry logic,
where the init functions will need the extra parameters. For such reasons, the rules for
determining these parameters are as symmetric as possible, across all clause parts.
In general, the loop parameters function as common invariant values across the whole
loop, while the iteration variables function as common variant values, or (if there is
no step function) as internal loop invariant temporaries.
Loop execution.
- When the loop is called, the loop input values are saved in locals, to be passed to every clause function. These locals are loop invariant.
- Each init function is executed in clause order (passing the external arguments
(a...)
) and the non-void
values are saved (as the iteration variables(v...)
) into locals. These locals will be loop varying (unless their steps behave as identity functions, as noted above). - All function executions (except init functions) will be passed the internal parameter list, consisting of
the non-
void
iteration values(v...)
(in clause order) and then the loop inputs(a...)
(in argument order). - The step and pred functions are then executed, in clause order (step before pred), until a pred function
returns
false
. - The non-
void
result from a step function call is used to update the corresponding value in the sequence(v...)
of loop variables. The updated value is immediately visible to all subsequent function calls. - If a pred function returns
false
, the corresponding fini function is called, and the resulting value (of typeR
) is returned from the loop as a whole. - If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit except by throwing an exception.
Usage tips.
- Although each step function will receive the current values of all the loop variables,
sometimes a step function only needs to observe the current value of its own variable.
In that case, the step function may need to explicitly drop all preceding loop variables.
This will require mentioning their types, in an expression like
dropArguments(step, 0, V0.class, ...)
. - Loop variables are not required to vary; they can be loop invariant. A clause can create a loop invariant by a suitable init function with no step, pred, or fini function. This may be useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
- If some of the clause functions are virtual methods on an instance, the instance
itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
like
new MethodHandle[]{identity(ObjType.class)}
. In that case, the instance reference will be the first iteration variable value, and it will be easy to use virtual methods as clause parts, since all of them will take a leading instance reference matching that value.
Here is pseudocode for the resulting loop handle. As above, V
and v
represent the types
and values of loop variables; A
and a
represent arguments passed to the whole loop;
and R
is the common result type of all finalizers as well as of the resulting loop.
Note that the parameter type listsV... init...(A...); boolean pred...(V..., A...); V... step...(V..., A...); R fini...(V..., A...); R loop(A... a) { V... v... = init...(a...); for (;;) { for ((v, p, s, f) in (v..., pred..., step..., fini...)) { v = s(v..., a...); if (!p(v..., a...)) { return f(v..., a...); } } } }
(V...)
and (A...)
have been expanded
to their full length, even though individual clause functions may neglect to take them all.
As noted above, missing parameters are filled in as if by dropArgumentsToMatch(java.lang.invoke.MethodHandle, int, java.util.List, int)
.
API Note:
- Example:
The same example, dropping arguments and using combinators:// iterative implementation of the factorial function as a loop handle static int one(int k) { return 1; } static int inc(int i, int acc, int k) { return i + 1; } static int mult(int i, int acc, int k) { return i * acc; } static boolean pred(int i, int acc, int k) { return i < k; } static int fin(int i, int acc, int k) { return acc; } // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods // null initializer for counter, should initialize to 0 MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); assertEquals(120, loop.invoke(5));
A similar example, using a helper object to hold a loop parameter:// simplified implementation of the factorial function as a loop handle static int inc(int i) { return i + 1; } // drop acc, k static int mult(int i, int acc) { return i * acc; } //drop k static boolean cmp(int i, int k) { return i < k; } // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods // null initializer for counter, should initialize to 0 MethodHandle MH_one = MethodHandles.constant(int.class, 1); MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause); assertEquals(720, loop.invoke(6));
// instance-based implementation of the factorial function as a loop handle static class FacLoop { final int k; FacLoop(int k) { this.k = k; } int inc(int i) { return i + 1; } int mult(int i, int acc) { return i * acc; } boolean pred(int i) { return i < k; } int fin(int i, int acc) { return acc; } } // assume MH_FacLoop is a handle to the constructor // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods // null initializer for counter, should initialize to 0 MethodHandle MH_one = MethodHandles.constant(int.class, 1); MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop}; MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc}; MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin}; MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause); assertEquals(5040, loop.invoke(7));
Parameters | |
---|---|
clauses |
MethodHandle : an array of arrays (4-tuples) of MethodHandle s adhering to the rules described above. |
Returns | |
---|---|
MethodHandle |
a method handle embodying the looping behavior as defined by the arguments. |
Throws | |
---|---|
IllegalArgumentException |
in case any of the constraints described above is violated. |
permuteArguments
public static MethodHandle permuteArguments (MethodHandle target, MethodType newType, int... reorder)
Produces a method handle which adapts the calling sequence of the given method handle to a new type, by reordering the arguments. The resulting method handle is guaranteed to report a type which is equal to the desired new type.
The given array controls the reordering.
Call #I
the number of incoming parameters (the value
newType.parameterCount()
, and call #O
the number
of outgoing parameters (the value target.type().parameterCount()
).
Then the length of the reordering array must be #O
,
and each element must be a non-negative number less than #I
.
For every N
less than #O
, the N
-th
outgoing argument will be taken from the I
-th incoming
argument, where I
is reorder[N]
.
No argument or return value conversions are applied.
The type of each incoming argument, as determined by newType
,
must be identical to the type of the corresponding outgoing parameter
or parameters in the target method handle.
The return type of newType
must be identical to the return
type of the original target.
The reordering array need not specify an actual permutation.
An incoming argument will be duplicated if its index appears
more than once in the array, and an incoming argument will be dropped
if its index does not appear in the array.
As in the case of dropArguments
,
incoming arguments which are not mentioned in the reordering array
are may be any type, as determined only by newType
.
import static java.lang.invoke.MethodHandles.*; import static java.lang.invoke.MethodType.*; ... MethodType intfn1 = methodType(int.class, int.class); MethodType intfn2 = methodType(int.class, int.class, int.class); MethodHandle sub = ... (int x, int y) -> (x-y) ...; assert(sub.type().equals(intfn2)); MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1); MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0); assert((int)rsub.invokeExact(1, 100) == 99); MethodHandle add = ... (int x, int y) -> (x+y) ...; assert(add.type().equals(intfn2)); MethodHandle twice = permuteArguments(add, intfn1, 0, 0); assert(twice.type().equals(intfn1)); assert((int)twice.invokeExact(21) == 42);
Parameters | |
---|---|
target |
MethodHandle : the method handle to invoke after arguments are reordered |
newType |
MethodType : the expected type of the new method handle |
reorder |
int : an index array which controls the reordering |
Returns | |
---|---|
MethodHandle |
a method handle which delegates to the target after it drops unused arguments and moves and/or duplicates the other arguments |
Throws | |
---|---|
NullPointerException |
if any argument is null |
IllegalArgumentException |
if the index array length is not equal to
the arity of the target, or if any index array element
not a valid index for a parameter of newType ,
or if two corresponding parameter types in
target.type() and newType are not identical, |
privateLookupIn
public static MethodHandles.Lookup privateLookupIn (Class<?> targetClass, MethodHandles.Lookup lookup)
Returns a lookup object
with full capabilities to emulate all
supported bytecode behaviors, including
private access, on a target class.
Parameters | |
---|---|
targetClass |
Class : the target class |
lookup |
MethodHandles.Lookup : the caller lookup object |
Returns | |
---|---|
MethodHandles.Lookup |
a lookup object for the target class, with private access |
Throws | |
---|---|
IllegalArgumentException |
if targetClass is a primitive type or array class |
NullPointerException |
if targetClass or caller is null |
IllegalAccessException |
is not thrown on Android |
publicLookup
public static MethodHandles.Lookup publicLookup ()
Returns a lookup object
which is trusted minimally.
It can only be used to create method handles to
publicly accessible fields and methods.
As a matter of pure convention, the lookup class
of this lookup object will be Object
.
Discussion:
The lookup class can be changed to any other class C
using an expression of the form
publicLookup().in(C.class)
.
Since all classes have equal access to public names,
such a change would confer no new access rights.
A public lookup object is always subject to
security manager checks.
Also, it cannot access
caller sensitive methods.
Returns | |
---|---|
MethodHandles.Lookup |
a lookup object which is trusted minimally |
reflectAs
public static T reflectAs (Class<T> expected, MethodHandle target)
Performs an unchecked "crack" of a
direct method handle.
The result is as if the user had obtained a lookup object capable enough
to crack the target method handle, called
Lookup.revealDirect
on the target to obtain its symbolic reference, and then called
MethodHandleInfo.reflectAs
to resolve the symbolic reference to a member.
If there is a security manager, its checkPermission
method
is called with a ReflectPermission("suppressAccessChecks")
permission.
Parameters | |
---|---|
expected |
Class : a class object representing the desired result type T |
target |
MethodHandle : a direct method handle to crack into symbolic reference components |
Returns | |
---|---|
T |
a reference to the method, constructor, or field object |
Throws | |
---|---|
SecurityException |
if the caller is not privileged to call setAccessible |
NullPointerException |
if either argument is null |
IllegalArgumentException |
if the target is not a direct method handle |
ClassCastException |
if the member is not of the expected type |
spreadInvoker
public static MethodHandle spreadInvoker (MethodType type, int leadingArgCount)
Produces a method handle which will invoke any method handle of the
given type
, with a given number of trailing arguments replaced by
a single trailing Object[]
array.
The resulting invoker will be a method handle with the following
arguments:
- a single
MethodHandle
target - zero or more leading values (counted by
leadingArgCount
) - an
Object[]
array containing trailing arguments
The invoker will invoke its target like a call to invoke
with
the indicated type
.
That is, if the target is exactly of the given type
, it will behave
like invokeExact
; otherwise it behave as if asType
is used to convert the target to the required type
.
The type of the returned invoker will not be the given type
, but rather
will have all parameters except the first leadingArgCount
replaced by a single array of type Object[]
, which will be
the final parameter.
Before invoking its target, the invoker will spread the final array, apply
reference casts as necessary, and unbox and widen primitive arguments.
If, when the invoker is called, the supplied array argument does
not have the correct number of elements, the invoker will throw
an IllegalArgumentException
instead of invoking the target.
This method is equivalent to the following code (though it may be more efficient):
This method throws no reflective or security exceptions.MethodHandle invoker = MethodHandles.invoker(type); int spreadArgCount = type.parameterCount() - leadingArgCount; invoker = invoker.asSpreader(Object[].class, spreadArgCount); return invoker;
Parameters | |
---|---|
type |
MethodType : the desired target type |
leadingArgCount |
int : number of fixed arguments, to be passed unchanged to the target |
Returns | |
---|---|
MethodHandle |
a method handle suitable for invoking any method handle of the given type |
Throws | |
---|---|
NullPointerException |
if type is null |
IllegalArgumentException |
if leadingArgCount is not in
the range from 0 to type.parameterCount() inclusive,
or if the resulting method handle's type would have
too many parameters |
tableSwitch
public static MethodHandle tableSwitch (MethodHandle fallback, MethodHandle... targets)
Creates a table switch method handle, which can be used to switch over a set of target method handles, based on a given target index, called selector.
For a selector value of n
, where n
falls in the range [0, N)
,
and where N
is the number of target method handles, the table switch method
handle will invoke the n-th target method handle from the list of target method handles.
For a selector value that does not fall in the range [0, N)
, the table switch
method handle will invoke the given fallback method handle.
All method handles passed to this method must have the same type, with the additional
requirement that the leading parameter be of type int
. The leading parameter
represents the selector.
Any trailing parameters present in the type will appear on the returned table switch method handle as well. Any arguments assigned to these parameters will be forwarded, together with the selector value, to the selected method handle when invoking it.
API Note:
- Example:
The cases each drop the
selector
value they are given, and take an additionalString
argument, which is concatenated (usingString.concat(String)
) to a specific constant label string for each case:MethodHandles.Lookup lookup = MethodHandles.lookup(); MethodHandle caseMh = lookup.findVirtual(String.class, "concat", MethodType.methodType(String.class, String.class)); caseMh = MethodHandles.dropArguments(caseMh, 0, int.class); MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: "); MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: "); MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: "); MethodHandle mhSwitch = MethodHandles.tableSwitch( caseDefault, case0, case1 ); assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data")); assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data")); assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data")); assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data"));
Parameters | |
---|---|
fallback |
MethodHandle : the fallback method handle that is called when the selector is not
within the range [0, N) . |
targets |
MethodHandle : array of target method handles. |
Returns | |
---|---|
MethodHandle |
the table switch method handle. |
Throws | |
---|---|
NullPointerException |
if fallback , the targets array, or any
any of the elements of the targets array are
null . |
IllegalArgumentException |
if the targets array is empty, if the leading
parameter of the fallback handle or any of the target
handles is not int , or if the types of
the fallback handle and all of target handles are
not the same. |
throwException
public static MethodHandle throwException (Class<?> returnType, Class<? extends Throwable> exType)
Produces a method handle which will throw exceptions of the given exType
.
The method handle will accept a single argument of exType
,
and immediately throw it as an exception.
The method type will nominally specify a return of returnType
.
The return type may be anything convenient: It doesn't matter to the
method handle's behavior, since it will never return normally.
Parameters | |
---|---|
returnType |
Class : the return type of the desired method handle |
exType |
Class : the parameter type of the desired method handle |
Returns | |
---|---|
MethodHandle |
method handle which can throw the given exceptions |
Throws | |
---|---|
NullPointerException |
if either argument is null |
tryFinally
public static MethodHandle tryFinally (MethodHandle target, MethodHandle cleanup)
Makes a method handle that adapts a target
method handle by wrapping it in a try-finally
block.
Another method handle, cleanup
, represents the functionality of the finally
block. Any exception
thrown during the execution of the target
handle will be passed to the cleanup
handle. The
exception will be rethrown, unless cleanup
handle throws an exception first. The
value returned from the cleanup
handle's execution will be the result of the execution of the
try-finally
handle.
The cleanup
handle will be passed one or two additional leading arguments.
The first is the exception thrown during the
execution of the target
handle, or null
if no exception was thrown.
The second is the result of the execution of the target
handle, or, if it throws an exception,
a null
, zero, or false
value of the required type is supplied as a placeholder.
The second argument is not present if the target
handle has a void
return type.
(Note that, except for argument type conversions, combinators represent void
values in parameter lists
by omitting the corresponding paradoxical arguments, not by inserting null
or zero values.)
The target
and cleanup
handles must have the same corresponding argument and return types, except
that the cleanup
handle may omit trailing arguments. Also, the cleanup
handle must have one or
two extra leading parameters:
- a
Throwable
, which will carry the exception thrown by thetarget
handle (if any); and - a parameter of the same type as the return type of both
target
andcleanup
, which will carry the result from the execution of thetarget
handle. This parameter is not present if thetarget
returnsvoid
.
The pseudocode for the resulting adapter looks as follows. In the code, V
represents the result type of
the try/finally
construct; A
/a
, the types and values of arguments to the resulting
handle consumed by the cleanup; and B
/b
, those of arguments to the resulting handle discarded by
the cleanup.
V target(A..., B...); V cleanup(Throwable, V, A...); V adapter(A... a, B... b) { V result = (zero value for V); Throwable throwable = null; try { result = target(a..., b...); } catch (Throwable t) { throwable = t; throw t; } finally { result = cleanup(throwable, result, a...); } return result; }
Note that the saved arguments (a...
in the pseudocode) cannot
be modified by execution of the target, and so are passed unchanged
from the caller to the cleanup, if it is invoked.
The target and cleanup must return the same type, even if the cleanup
always throws.
To create such a throwing cleanup, compose the cleanup logic
with throwException
,
in order to create a method handle of the correct return type.
Note that tryFinally
never converts exceptions into normal returns.
In rare cases where exceptions must be converted in that way, first wrap
the target with catchException(java.lang.invoke.MethodHandle, java.lang.Class, java.lang.invoke.MethodHandle)
to capture an outgoing exception, and then wrap with tryFinally
.
It is recommended that the first parameter type of cleanup
be
declared Throwable
rather than a narrower subtype. This ensures
cleanup
will always be invoked with whatever exception that
target
throws. Declaring a narrower type may result in a
ClassCastException
being thrown by the try-finally
handle if the type of the exception thrown by target
is not
assignable to the first parameter type of cleanup
. Note that
various exception types of VirtualMachineError
,
LinkageError
, and RuntimeException
can in principle be
thrown by almost any kind of Java code, and a finally clause that
catches (say) only IOException
would mask any of the others
behind a ClassCastException
.
Parameters | |
---|---|
target |
MethodHandle : the handle whose execution is to be wrapped in a try block. |
cleanup |
MethodHandle : the handle that is invoked in the finally block. |
Returns | |
---|---|
MethodHandle |
a method handle embodying the try-finally block composed of the two arguments. |
Throws | |
---|---|
NullPointerException |
if any argument is null |
IllegalArgumentException |
if cleanup does not accept
the required leading arguments, or if the method handle types do
not match in their return types and their
corresponding trailing parameters |
varHandleExactInvoker
public static MethodHandle varHandleExactInvoker (VarHandle.AccessMode accessMode, MethodType type)
Produces a special invoker method handle which can be used to
invoke a signature-polymorphic access mode method on any VarHandle whose
associated access mode type is compatible with the given type.
The resulting invoker will have a type which is exactly equal to the
desired given type, except that it will accept an additional leading
argument of type VarHandle
.
Parameters | |
---|---|
accessMode |
VarHandle.AccessMode : the VarHandle access mode |
type |
MethodType : the desired target type |
Returns | |
---|---|
MethodHandle |
a method handle suitable for invoking an access mode method of any VarHandle whose access mode type is of the given type. |
varHandleInvoker
public static MethodHandle varHandleInvoker (VarHandle.AccessMode accessMode, MethodType type)
Produces a special invoker method handle which can be used to
invoke a signature-polymorphic access mode method on any VarHandle whose
associated access mode type is compatible with the given type.
The resulting invoker will have a type which is exactly equal to the
desired given type, except that it will accept an additional leading
argument of type VarHandle
.
Before invoking its target, if the access mode type differs from the
desired given type, the invoker will apply reference casts as necessary
and box, unbox, or widen primitive values, as if by
asType
. Similarly, the return value will be
converted as necessary.
This method is equivalent to the following code (though it may be more
efficient): publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)
Parameters | |
---|---|
accessMode |
VarHandle.AccessMode : the VarHandle access mode |
type |
MethodType : the desired target type |
Returns | |
---|---|
MethodHandle |
a method handle suitable for invoking an access mode method of any VarHandle whose access mode type is convertible to the given type. |
whileLoop
public static MethodHandle whileLoop (MethodHandle init, MethodHandle pred, MethodHandle body)
Constructs a while
loop from an initializer, a body, and a predicate.
This is a convenience wrapper for the generic loop combinator.
The pred
handle describes the loop condition; and body
, its body. The loop resulting from this
method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
evaluates to true
).
The loop will terminate once the predicate evaluates to false
(the body will not be executed in this case).
The init
handle describes the initial value of an additional optional loop-local variable.
In each iteration, this loop-local variable, if present, will be passed to the body
and updated with the value returned from its invocation. The result of loop execution will be
the final value of the additional loop-local variable (if present).
The following rules hold for these argument handles:
- The
body
handle must not benull
; its type must be of the form(V A...)V
, whereV
is non-void
, or else(A...)void
. (In thevoid
case, we assign the typevoid
to the nameV
, and we will write(V A...)V
with the understanding that avoid
typeV
is quietly dropped from the parameter list, leaving(A...)V
.) - The parameter list
(V A...)
of the body is called the internal parameter list. It will constrain the parameter lists of the other loop parts. - If the iteration variable type
V
is dropped from the internal parameter list, the resulting shorter list(A...)
is called the external parameter list. - The body return type
V
, if non-void
, determines the type of an additional state variable of the loop. The body must both accept and return a value of this typeV
. - If
init
is non-null
, it must have return typeV
. Its parameter list (of some form(A*)
) must be effectively identical to the external parameter list(A...)
. - If
init
isnull
, the loop variable will be initialized to its default value. - The
pred
handle must not benull
. It must haveboolean
as its return type. Its parameter list (either empty or of the form(V A*)
) must be effectively identical to the internal parameter list.
The resulting loop handle's result type and parameter signature are determined as follows:
- The loop handle's result type is the result type
V
of the body. - The loop handle's parameter types are the types
(A...)
, from the external parameter list.
Here is pseudocode for the resulting loop handle. In the code, V
/v
represent the type / value of
the sole loop variable as well as the result type of the loop; and A
/a
, that of the argument
passed to the loop.
V init(A...); boolean pred(V, A...); V body(V, A...); V whileLoop(A... a...) { V v = init(a...); while (pred(v, a...)) { v = body(v, a...); } return v; }
API Note:
- Example:
// implement the zip function for lists as a loop handle static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); } static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); } static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) { zip.add(a.next()); zip.add(b.next()); return zip; } // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep); List<String> a = Arrays.asList("a", "b", "c", "d"); List<String> b = Arrays.asList("e", "f", "g", "h"); List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h"); assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
API Note:
- The implementation of this method can be expressed as follows:
MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) { MethodHandle fini = (body.type().returnType() == void.class ? null : identity(body.type().returnType())); MethodHandle[] checkExit = { null, null, pred, fini }, varBody = { init, body }; return loop(checkExit, varBody); }
Parameters | |
---|---|
init |
MethodHandle : optional initializer, providing the initial value of the loop variable.
May be null , implying a default initial value. See above for other constraints. |
pred |
MethodHandle : condition for the loop, which may not be null . Its result type must be boolean . See
above for other constraints. |
body |
MethodHandle : body of the loop, which may not be null . It controls the loop parameters and result type.
See above for other constraints. |
Returns | |
---|---|
MethodHandle |
a method handle implementing the while loop as described by the arguments. |
Throws | |
---|---|
IllegalArgumentException |
if the rules for the arguments are violated. |
NullPointerException |
if pred or body are null . |
zero
public static MethodHandle zero (Class<?> type)
Produces a constant method handle of the requested return type which returns the default value for that type every time it is invoked. The resulting constant method handle will have no side effects.
The returned method handle is equivalent to empty(methodType(type))
.
It is also equivalent to explicitCastArguments(constant(Object.class, null), methodType(type))
,
since explicitCastArguments
converts null
to default values.
Parameters | |
---|---|
type |
Class : the expected return type of the desired method handle |
Returns | |
---|---|
MethodHandle |
a constant method handle that takes no arguments and returns the default value of the given type (or void, if the type is void) |
Throws | |
---|---|
NullPointerException |
if the argument is null |
Content and code samples on this page are subject to the licenses described in the Content License. Java and OpenJDK are trademarks or registered trademarks of Oracle and/or its affiliates.
Last updated 2024-12-18 UTC.